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Abstract. In the traditional setting, text categorization is formulated as a concept learning problem where
each instance is a single isolated document. However, this perspective is not appropriate in the case of many
digital libraries that offer as contents scanned and optically read books or magazines. In this paper, we propose a
more general formulation of text categorization, allowing documents to be organized as sequences of pages. We
introduce a novel hybrid system specifically designed for multi-page text documents. The architecture relies on
hidden Markov models whose emissions are bag-of-words resulting from a multinomial word event model, as in
the generative portion of the Naive Bayes classifier. The rationale behind our proposal is that taking into account
contextual information provided by the whole page sequence can help disambiguation and improves single page
classification accuracy. Our results on two datasets of scanned journals from the Making of America collection
confirm the importance of using whole page sequences. The empirical evaluation indicates that the error rate
(as obtained by running the Naive Bayes classifier on isolated pages) can be significantly reduced if contextual
information is incorporated.
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1. Introduction

The recent explosion of online textual information has significantly increased the demand
for intelligent agents capable of performing tasks such as personalized information filtering,
semantic document indexing, information extraction, and automatic metadata generation.
Although a complete answer may require in-depth approaches involving full understand-
ing of natural language, text categorization is a simpler but effective technique that can
contribute to the solution of the above problems.

Originally posed as a problem in information retrieval, text categorization can be con-
veniently formulated as a supervised learning problem. In this setting, a machine learn-
ing algorithm takes as input a set of labeled example documents (where the label in-
dicates which category the example belongs to) and attempts to infer a function that
will map new documents into their categories. Several algorithms have been proposed
within this framework, including regression models (Yang and Chute, 1994), inductive
logic programming (Cohen, 1995), probabilistic classifiers (Koller and Sahami, 1997;
Lewis and Gale, 1994; Mitchell, 1997), decision trees (Lewis and Ringuette, 1994), neu-
ral networks (Ng et al., 1997), and more recently support vector machines (Joachims,
1998).
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Research on text categorization has been mainly focused on non-structured documents.
In the typical approach, inherited from information retrieval, each document is represented
by a sequence of words, and the sequence itself is normally flattened down to a simplified
representation called bag-of-words. This is like representing each document as a feature-
vector, where features are words in the vocabulary and components of the feature-vector
are statistics such as word counts in the document. Although such a simplified representa-
tion is appropriate for relatively flat documents (such as email and news messages), other
types of documents are internally structured and this structure should be exploited in the
representation to better inform the learner.

In this paper we are interested in the domain of digital libraries and, in particular, collec-
tions of digitized books or magazines, with text extracted by an Optical Character Recogni-
tion (OCR) system. Unlike email or news documents, books and magazines are multi-page
documents and the simplest level of structure that can be exploited is the serial order relation
defined among single pages. In these domains, the solution to problems such as automatic
metadata extraction can be helped by a classifier that assigns a category to each page of the
document. The task we consider is the automatic categorization of each page according to
its (semantic) contents.1

Exploiting the serial order relation among pages within a single document can be expected
to improve classification accuracy when compared to a strategy that simply classifies each
page separately. This is because sequences of pages in documents such as books or maga-
zines often follow regularities such as those implied by typographical and editorial conven-
tions. Consider for example the domain of books and suppose categories of interest include
title-page, dedication-page, preface-page, index-page, table-of-contents,
regular-page, and so on. Even in this very simple case we can expect constraints about
the valid sequences of page categories in a book. For example, title-page is very unlikely
to follow index-page and, similarly, dedication-page is more likely to follow title-
page than preface-page. Constraint of this type can be captured and modeled using a
stochastic grammar (see, e.g., figure 4 later on). Thus, information about the category of
a given page can be gathered not only by examining the contents of that page, but also
by examining the contents of other pages in the sequence. Since contextual information
can significantly help to disambiguate between page categories, we expect classification
accuracy to improve if the learner has access to whole sequences instead of single-page
documents.

In this paper we combine several algorithmic ideas to solve the problem of text cat-
egorization in the domain of multi-page documents. First, we use an algorithm similar
to those described in Stolcke and Omohundro (1993) and McCallum et al. (2000) for
inducing a stochastic regular grammar over sequences of page categories. Second, we in-
troduce a hidden Markov model (HMM) that can deal with sequences of bag-of-words.
Each state in the HMM is associated with a unique page category. Emissions are modeled
by a multinomial distribution over word events, like in the generative component of the
Naive Bayes classifier. The HMM is trained from (partially) labeled page sequences, i.e.
state variables are partially observed in the training set. Unobserved states (which is the
common setting in most classic applications of HMMs) arise here when document pages
are partially unlabeled, like in the framework described in Joachims (1999) and Nigam et al.
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(2000). Finally, we solve the categorization problem by running the Viterbi algorithm on
the trained HMM. For each new (unseen) document, this algorithm outputs a sequence of
page categories having maximum posterior2 probability. The method is somewhat related
to recent applications of HMMs to information extraction (Freitag and McCallum, 2000;
McCallum et al., 2000) but the output labeling in our case is associated with the entire
stream of text contained into a page, while in Freitag and McCallum (2000) and McCallum
et al. (2000) the HMM is used to attach labels to single words of shorter portions of
text.

Our approach is validated on two real datasets consisting of 95 issues of the American
Missionary, and 54 issues of the Scribners Monthly, two journals included in the “Making of
America” collection (Shaw and Blumson, 1997). In spite of text noise due to optical character
recognition, our system achieves good page classification accuracy. More importantly, we
show that incorporating contextual information significantly reduces classification error,
both in the case of completely labeled example documents, and when unlabeled documents
are included in the training set.

2. Background

Let d be a generic multi-page document, and let dt denote the t-th page within the document.
The standard categorization task consists of learning from examples a function f : dt →
{c1, . . . , cK } that maps each page dt into one out of K classes.

2.1. The Naive Bayes classifier

The above task can also be reformulated in probabilistic terms as the estimation of the
conditional probability P(Ct = ck | dt ), being Ct a multinomial class variable. In so doing,
f can be computed using Bayes’ decision rule, i.e. f (d) is the class with higher posterior
probability P(Ct = ck | dt ) ∝ P(dt | Ct = ck)P(Ct = ck). The model is characterized by
the so-called Naive Bayes assumption, prescribing that word events (each occurrence of a
given word in the page corresponds to one event) are conditionally independent given the
page category. As a result, the class conditional probabilities can be factorized as

P
(
dt | Ct = ck

) ∝
|dt |∏
i=1

P
(
wi

t

∣∣ Ct = ck
)

(1)

where |dt | denotes the length of page dt and wi
t is the i-th word in the page. This conditional

independence assumption is graphically represented by the Bayesian network3 shown in
figure 1.

Although the basic assumption is clearly false in the real world, the model works well
in practice since classification requires finding a good discriminating function, not neces-
sarily a very accurate model of the involved probability distributions. Training consists of
estimating model’s parameter from a dataset D of labeled documents (see, e.g. Mitchell,
1997).
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Figure 1. Bayesian network for the Naive Bayes classifier.

2.2. Hidden Markov models

HMMs have been introduced several years ago as a tool for probabilistic sequence modeling.
The interest in this area developed particularly in the Seventies, within the speech recogni-
tion research community (Rabiner, 1989). During the last years a large number of variants
and improvements over the standard HMM have been proposed and applied. Undoubt-
edly, Markovian models are now regarded as one of the most significant state-of-the-art
approaches for sequence learning. Besides several applications in pattern recognition and
molecular biology, HMMs have been also applied to text related tasks, including natural
language modeling (Charniak, 1993) and, more recently, information retrieval and extrac-
tion (Freitag and McCallum, 2000; McCallum et al., 2000). The recent view of the HMM as
a particular case of Bayesian networks (Bengio and Frasconi, 1995; Lucke, 1995; Smyth et
al., 1997) has helped their theoretical understanding and the ability to conceive extensions
to the standard model in a sound and formally elegant framework.

An HMM describes two related discrete-time stochastic processes. The first process per-
tains to hidden discrete state variables, denoted Xt , forming a first-order Markov chain
and taking realizations on a finite set {x1, . . . , x N }. The second process pertains to ob-
served variables or emissions, denoted Dt . Starting from a given state at time 0 (or given
an initial state distribution P(X0)) the model probabilistically transitions to a new state
X1 and correspondingly emits observation D1. The process is repeated recursively until
an end state is reached. Note that, as this form of computation may suggest, HMMs are
closely related to stochastic regular grammars (Charniak, 1993). The Markov property
prescribes that Xt+1 is conditionally independent of X1, . . . , Xt−1 given Xt . Furthermore,
it is assumed that Dt is independent of the rest given Xt . These two conditional
independence assumptions are graphically depicted using the Bayesian network of
figure 2. As a result, an HMM is fully specified by the following conditional probability
distributions:4

P(Xt | Xt−1) (transition distribution)

P(Dt | Xt ) (emission distribution)
(2)

Since the process is stationary, the transition distribution can be represented as a square
stochastic matrix whose entries are the transition probabilities P(Xt = xi | Xt−1 = x j ),
abbreviated as P(xi | x j ) in the following. In the classic literature, emissions are restricted
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Figure 2. Bayesian networks for standard HMMs.

to be symbols in a finite alphabet or multivariate continuous variables (Rabiner, 1989). As
explained in the next section, our model allows emissions to be bag-of-words.

3. The multi-page classifier

We now turn to the description of our classifier for multi-page documents. In this case the
categorization task consists of learning from examples a function that maps the whole doc-
ument sequence d1, . . . , dT into a corresponding sequence of page categories, c1, . . . , cT .
This section presents the architecture and the asociated algorithms for grammar extraction,
training, and classification.

3.1. Architecture

The system is based on an HMM whose emissions are associated with entire pages of the
document. Thus, the realizations of the observation Dt are bag-of-words representing the
text in the t-th page of the document. HMM states are related to pages categories by a
deterministic function φ that maps state realizations into page categories. We assume that φ

is a surjection but not a bijection, i.e. that there are more state realizations than categories.
This enriches the expressive power of the model, allowing different transition behaviors for
pages of the same class, depending on where the page is actually encountered within the
sequence. However, if the page contents depends on the category but not on the context of
the category within the sequence,5 multiple states may introduce too many parameters and
it may be convenient to assume that

P(Dt | xi ) = P(Dt | x j ) = P(Dt | ck) if φ(xi ) = φ(x j ) = ck . (3)

This constrains emission parameters to be the same for a given page category, a form of
parameters sharing that may help to reduce overfitting. The emission distribution is modeled
by assuming conditional word independence given the class, like in Eq. (1):

P(dt | ck) =
|dt |∏
i=1

P
(
wi

t

∣∣ ck
)
. (4)

Therefore, the architecture can be graphically described as the merging of the Bayesian
networks for HMMs and Naive Bayes, as shown in figure 3. We remark that the state (and
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Figure 3. Bayesian network describing the architecture of the sequential classifier.

hence the category) at page t depends not only on the contents of that page, but also on
the contents of all other pages in the document, summarized into the HMM states. This
probabilistic dependency implements the mechanism for taking contextual information into
account.

The algorithms used in this paper are derived from the literature on Markov models
(Rabiner, 1989), inference and learning in Bayesian networks (Pearl, 1988; Heckerman,
1997; Jensen, 1996) and classification with Naive Bayes (Lewis and Gale, 1994; Kalt,
1996). In the following we give details about the integration of all these methods.

3.2. Induction of HMM topology

The structure or topology of an HMM is a representation of the allowable transitions
between hidden states. More precisely, the topology is described by a directed graph whose
vertices are state realizations {x1, . . . , x N }, and whose edges are the pairs (x j , xi ) such that
P(xi | x j ) �= 0. An HMM is said to be ergodic if its transition graph is fully-connected.
However, in almost all interesting application domains, less connected structures are better
suited for capturing the observed properties of the sequences being modeled, since they
convey domain prior knowledge. Thus, starting from the right structure is an important
problem in practical Hidden Markov modeling. As an example, consider figure 4, showing
a (very simplified) graph that describes transitions between the parts of a hypothetical set
of books. Possible state realizations are {start, title, dedication, preface, toc, regular, index,
end} (note that in this simplified example φ is a one-to-one mapping).

Figure 4. Example of HMM transition graph.
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While a structure of this kind could be hand-crafted by a domain expert, it may be more
advantageous to learn it automatically from data. We now briefly describe the solution
adopted to automatically infer HMM transition graphs from sample multi-page documents.
Let us assume that all the pages of the available training documents are labeled with the
class they belong to. One can then imagine to take advantage of the observed labels to
search for an effective structure in the space of HMMs topologies. Our approach is based
on the application of an algorithm for data-driven model induction adapted from previous
works on construction of HMMs of text phrases for information extraction (McCallum et al.,
2000). The algorithm starts by building a structure that can only “explain” the available
training sequences (a maximally specific model). This initial structure has as many paths
(from the initial to the final state) as there are training sequences. Every path is associated
with one sequence of pages, i.e. a distinct state is created for every page in the training set.
Each state x is labeled by φ(x), the category of the corresponding page in the document.
Note that, unlike the example shown in figure 4, several states are generated for the same
category. The algorithm then iteratively applies merging heuristics that collapse states so
as to augment generalization capabilities over unseen sequences. The first heuristic, called
neighbor-merging, collapses two states x and x ′ if they are neighbors in the graph and
φ(x) = φ(x ′). The second heuristic, called V-merging, collapses two states x and x ′ if
φ(x) = φ(x ′) and they share a transition from or to a common state, thus reducing the
branching factor of the structure.

3.3. Inference and learning

Given the HMM topology extracted by the algorithm described above, the learning problem
consists of determining transition and emission parameters. One important distinction that
needs to be made when training Bayesian networks is whether or not all the variables are
observed. Assuming complete data (all variables observed), maximum likelihood estimation
of the parameters could be solved using a one-step algorithm that collects sufficient statistics
for each parameter (Heckerman, 1997). In our case, data are complete if and only if the
following two conditions are met:

1. there is a one-to-one mapping between HMM states and page categories (i.e. N = K
and for k = 1, . . . , N , φ(xk) = ck), and

2. the category is known for each page in the training documents, i.e. the dataset consists
of sequences of pairs ({d1, c∗

1}, . . . , {dT , c∗
T }), being c∗

t the (known) category of page t
and being T the number of pages in the document.

Under these assumptions, estimation of transition parameters is straightforward and can be
accomplished as follows:

P(xi | x j ) = N (ci, c j )∑N
�=1 N (c�, c j )

(5)

where N (ci, c j ) is the number of times a page of class ci follows a page of class c j in the
training set. Similarly, estimation of emission parameters in this case would be accomplished
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exactly like in the case of the Naive Bayes classifier (see, e.g. Mitchell (1997)):

P(w� | ck) = 1 + N (w�, ck)

|V | + ∑|V |
j=1 N (w j, ck)

(6)

where N (w�, ck) is the number of occurrences of word w� in pages of class ck and |V | is the
vocabulary size (1/|V | corresponds to a Dirichlet prior over the parameters (Heckerman,
1997) and plays a regularization role for whose words which are very rare within a class).

Conditions 1 and 2 above, however, are normally not satisfied. First, in order to model
more accurately different contexts in which a category may occur, it may be convenient to
have multiple distinct HMM states for the same page category. This implies that page labels
do not determine a unique state path. Second, labeling pages in the training set is a time
consuming process that needs to be performed by hand and it may be important to use also
unlabeled documents for training (Joachims, 1999; Nigam et al., 2000). This means that
label c∗

t may be not available for some t . If assumption 2 is satisfied but assumption 1 is not,
we can derive the following approximated estimation formula for transition parameters:

P(xi | x j ) = N (xi, x j )∑N
�=1 N (x�, x j )

(7)

where N (xi, x j ) counts how many times state xi follows x j during the state merge procedure
described in Section 3.2. However, in general, the presence of hidden variables requires an
iterative maximum likelihood estimation algorithm, such as gradient ascent or expectation-
maximization (EM). Our implementation uses the EM algorithm, originally formulated
in Dempster et al. (1977) and usable for any Bayesian network with local conditional
probability distributions belonging to the exponential family (Heckerman, 1997). Here the
EM algorithm essentially reduces to the Baum-Welch form (Rabiner, 1989) with the only
modification that some evidence is entered into state variables. Since multiple states are
associated with a category and even for labeled documents only the page category is known,
state evidence takes the form of findings (Jensen, 1996). State evidence is taken into account
in the E-step by changing forward propagation as follows:

αt ( j) =




0 if φ(x j ) �= c∗
t

N∑
i=1

αt−1(i)P(x j | xi )P(dt | x j ) otherwise
(8)

where

αt (i)
.= P(d1, . . . , dt , Xt = xi )

is the forward variable in the Baum-Welch algorithm. The emission probability P(dt |x j )

is obtained from Eq. (4), using ck = φ(x j ).
The M-step is performed in the standard way for transition parameters, by replacing counts

in Eq. (5) with their expectations given all the observed variables. Emission probabilities
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are also estimated using expected word counts. If parameters are shared as indicated in
Eq. (3), these counts should be summed over states having the same label. Thus, in the case
of incomplete data, Eq. (6) is replaced by

P(w� | ck)

= S + ∑S
s=1

∑T
t=1 N (w�, ck)

∑
i : φ(xi )=ck P(Xt = xi | d1, . . . , dT )

S · |V | + ∑|V |
j=1

∑S
s=1

∑T
t=1 N (w j, ck)

∑
i : φ(xi )=ck P(Xt = xi | d1, . . . , dT )

(9)

where S is the number of training sequences, N (w�, ck) is the number of occurrences of
word w� in pages of class ck and P(Xt = xi | d1, . . . , dT ) is the probability of being in state
xi at page t given the observed sequence of pages d1 . . . dT . Readers familiar with HMMs
should recognize that the latter quantity can be computed by the Baum-Welch procedure
during the E-step. The sum on p extends over training sequences, while the sum on t extends
over pages of the p-th document in the training set. The E- and M-steps are iterated until a
local maximum of the (incomplete) data likelihood is reached.

Note that if page categories are observed, it is convenient to use the estimates computed
with Eq. (7) as a starting point, rather than using random initial parameters. Similarly, an
initial estimate of the emission parameters can be obtained from Eq. (6).

It is interesting to point out a related application of the EM algorithm for learning from
labeled and unlabeled documents (Nigam et al., 2000). In that paper, the only concern was
to allow the learner to take advantage of unlabeled documents in the training set. As a major
difference, the method in Nigam et al. (2000) assumes flat single-page documents and, if
applied to multi-page documents, would be equivalent to a zero-order Markov model that
cannot take contextual information into account.

3.4. Page classification

Given a document of T pages, classification is performed by first computing the sequence
of states x̂1, . . . , x̂T that was most likely to have generated the observed sequence of pages,
and then mapping each state to the corresponding category φ(x̂t ). The most likely state
sequence can be obtained by running an adapted version of Viterbi’s algorithm, whose
more general form is the max-propagation algorithm for Bayesian networks described in
Jensen (1996). Briefly, the following quantity

δ
j
t

.= max
x1,...,xt−1

P(X1, . . . , Xt = x j , d1, . . . , dt ) (10)

is computed using the following recursion:

δ
j
1 = P(X1 = x j )P(d1 | x j ) (11)

δ
j
t =

[
max

i=1,...,N
δi

t−1 P(x j | xi )

]
P(dt | x j ) (12)

ψ
j

t = arg max
i=1,...,N

δi
t−1 P(x j | xi ). (13)
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The optimal state sequence is then retrieved by backtracking:

x̂T = arg max
i=1,...,N

δi
T , (14)

x̂t = ψ
x̂t+1
t . (15)

Finally, categories are obtained as ĉt = φ(x̂t ). By contrast, note that the Naive Bayes clas-
sifier would compute the most likely categories as

ĉt = arg max
j=1,...,K

P(c j )P(dt | c j ). (16)

Comparing Eqs. (11)–(15) to Eq. (16) we see that both classifiers rely on the same emission
model P(dt | c j ) but while Naive Bayes employs the prior class probability to compute its
final prediction, the HMM classifier takes advantage of a dynamic term (in square brackets
in Eq. (12)) that incorporates grammatical constraints.

4. Experimental results

In this section, we describe a set of experiments that give empirical evidence of the ef-
fectiveness of the proposed model. The main purpose of our experiments was to make a
comparison between our multi-page classification approach and a traditional isolated page
classification system, like the well known Naive Bayes text classifier. The evaluation has
been conducted over real-world documents that are naturally organized in the form of page
sequences. We used two different datasets associated with two journals in the Making of
America (MOA) collection. MOA is a joined project between the University of Michigan
and Cornell University (see http://moa.umdl.umich.edu/about.html and Shaw and
Blumson (1997)) for collecting and making available digitized information about history
and evolution processes of the American society between the XIX and the XX century.

4.1. Datasets

The first dataset is a subset of the journal American Missionary, a sociological magazine
with strong Christian guidelines. The task consists of correctly classifying pages of previ-
ously unseen documents into one of the ten categories described in Table 1. Most of these
categories are related to the topic of the articles, but some are related to the parts of the
journal (i.e. Contents, Receipts, and Advertisements). The dataset we selected contains 95
issues from 1884 to 1893, for a total of 3222 OCR text pages. Special issues and final report
issues (typically November and December issues) have been removed from the dataset as
they contain categories not found in the rest. The ten categories are temporally stable over
the 1883–1893 time period.

The second dataset is a subset of Scribners Monthly, a recreational and cultural magazine
printed in the second half of the XIX century. Table 2 describes the categories we have
selected for this classification task. The filtered dataset contains a total of 6035 OCR text
pages, organized into issues ranging from year 1870 to 1875. Although spanning a shorter
temporal interval, the number of pages in this second dataset is larger than in the first one
because issues are about 3–4 times longer.
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Table 1. Categories in the American Missionary domain.

Name Description

1. Contents Cover and index of surveys

2. Editorial Editorial articles

3. The South Afro-Americans’ surveys

4. The Indians American Indians’ surveys

5. The Chinese Reports from China missions

6. Bureau of Women’s work Articles about female condition

7. Children’s Page Education and childhood

8. Communications Magazine information

9. Receipts Lists of founders

10. Advertisements Contents is mostly graphic, with little text description

Table 2. Categories in the Scribners Monthly domain.

Name Description

1. Article Generic articles

2. Books and Authors at Home and Abroad Book reviews

3. Contents Table of contents

4. Culture and Progress Broad cultural news

5. Etchings Poems or tales

6. Home and Society Articles on home living

7. Nature and Science Scientific articles

8. The Old Cabinet Articles on fine arts

9. Topics of the Time News reports

Category labels for the two datasets were obtained semi-automatically, starting from the
MOA XML files supplied with the documents collections. The assigned categories were then
manually checked. In the case of a page containing the end and the beginning of two articles
belonging to different categories, the page was assigned the category of the ending article.

Each page within a document is represented as a bag-of-words, counting the number of
word occurrences within the page. It is worth remarking that in both datasets, instances
are text documents output by an OCR system. Imperfections of the recognition algorithm
and the presence of images in some pages yields noisy text, containing misspelled or
nonexistent words, and trash characters (see Bicknese (1998) for a report of OCR accuracy
in the MOA digital library). Although these errors may negatively affect the learning process
and subsequent results in the evaluation phase, we made no attempts to correct and filter out
misspelled words, except for the feature selection process described in Section 4.3. However,
since OCR extracted documents preserve the text layout found in the original image, it was
necessary to rejoin word fragments that had been hyphenated due to line breaking.
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4.2. Grammar induction

In the case of completely labeled documents, it is possible to run the structure learning
algorithm presented in Section 3.2. In figure 5 we show an example of induced HMM
topology for the journal The American Missionary. This structure was extracted using 10
issues (year 1884) as a training set. Each vertex in the transition graph is associated with one
HMM state and is labeled with the corresponding category index (see Table 1). Edges are
labeled with the transition probability from source to target state, estimated in this case by
counting state transitions during the state merging procedure (see Eq. (7)). These values are
also used as initial estimates of P(xi |x j ) and subsequently refined by the EM algorithm. The
associated stochastic grammar implies that valid sequences must start with the index page
(class 1), followed by a page of general communications (class 8). Next state is associated
with a page of an editorial article (2). Self transition here has a value of 0.91, meaning that
with high probability the next page will belong to the editorial too. With lower probability
(0.07) next page is one of “The South” survey (3) or (probability 0.008) “The Indians” (4)
or “Bureau of Women’s work” (6).

In figure 6 we show one example of induced HMM topology for journal Scribners
Monthly, obtained from 12 training issues (year 1871). Although issues of Scribners Monthly
are longer and the number of categories is comparable to those in the American Missionary,
the extracted transition diagram in figure 6 is simpler than the one in figure 5. This reflects
less variability in the sequential organization of articles in Scribners Monthly. Note that
category 7 (Home and Society) is rare and never occurs in 1871.

4.3. Feature selection

Text pages were first preprocessed with common filtering algorithms including stemming
and stop words removal. Still, the bag-of-words representation of pages leads to a very
high-dimensional feature space that can be responsible of overfitting in conjunction to al-
gorithms based on generative probabilistic models. Feature selection is a technique for
limiting overfitting by removing non-informative words from documents. In our experi-
ments, we performed feature selection using information gain (Yang and Pedersen, 1997).
This criterion is often employed in different machine learning contexts. It measures the
average number of bits of information about the category that are gained by including a
word in a document. For each dictionary term w, the gain is defined as

G(w) = −
K∑

k=1

P(ck) log2 P(ck) + P(w)

K∑
k=1

P(ck | w) log2 P(ck | w)

+ P(w̄)

K∑
k=1

P(ck | w̄) log2 P(ck | w̄)

where w̄ denotes the absence of word w. Feature selection is performed by retaining only the
words having the highest average mutual information with the class variable. OCR errors,
however, can produce very noisy features which may be responsible of poor performance
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Figure 5. Data induced HMM topology for American Missionary, year 1884. Numbers in each node correspond
to a page category (see Table 1).
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Figure 6. Data induced HMM topology for Scribners Monthly, year 1871. Numbers in each node correspond to
a page category (see Table 2).
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even if feature selection is performed. For this reason, it may be convenient to prune from
the dictionary (before applying the information gain criterion) all the words occurring less
than a given threshold h in the training set. Preliminary experiments showed that best
performances are achieved by pruning words having less than h = 10 occurrences.

4.4. Accuracy comparisons

In the following we compare isolated page classification (using standard Naive Bayes) to
sequential classification (using the proposed HMM architecture). Although classification
accuracy could be estimated by fixing a split of the available data into a training and a
test set, here we suggest a method that attempts to incorporate some peculiarities of digital
libraries domain. In particular, hand-labeling of documents for the purpose of training is
a very expensive activity and working with large training sets is likely to be unrealistic
in practical applications. For this reason, in most experiments we deliberately used small
fractions of the available data for training.

Moreover, there is a problem of temporal stability as the journal organization may change
over time. In our test we attempted to address this aspect by assuming that training data is
available for a given year and we decided to test generalization over journal issues published
in different years. Splitting according to publication year can be an advantage for the training
algorithm since it increases the likelihood that different issue organizations are represented
in the training set.

The resulting method is related to k-fold cross-validation, a common approach for accu-
racy estimation that partitions the dataset into k subsets and iteratively use one subset for
testing and the other k − 1 for training. In our experiments we reversed the proportions of
data in the training and test sets, using all the journal issues in one year for training, and
the remaining issues for testing. We believe that this setting is more realistic in the case of
digital libraries.

In the following experiments, the HMM classifiers were trained by first extracting the
transition structure, then initializing the parameters using Eqs. (6) and (7), and finally tuning
the parameters using the EM algorithm. We found that the initial parameter estimates are
very close to the final solution found by the EM algorithm. Typically, 2 or 3 iterations are
sufficient for EM to converge.

4.4.1. American Missionary dataset. The results of the ten resulting experiments are
shown in figure 7. The hybrid HMM classifier (performing sequential classification) con-
sistently outperforms the plain Naive Bayes classifier working on isolated pages. The graph
on the top summarizes results obtained without feature selection. Averaging the results over
all the ten experiments, NB achieves 61.9% accuracy, while the HMM achieves 80.4%. This
corresponds to a 48.4% error rate reduction. The graph on the bottom refers to results ob-
tained by selecting the best 300 words according to the information gain criterion. The
average accuracy in this case is 69.8% for NB and 80.6% for the HMM (a 35.7% error
rate reduction). In both cases, words occurring less than 10 times in their training sets were
pruned. When using feature selection, NB improves while the HMM performance is essen-
tially the same. Moreover, the standard deviation of the accuracy is smaller for NB (2.8%,
compared to 4.2% for the HMM). The larger variability in the case of the HMM is due to
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Figure 7. Isolated vs. sequential page classification on the American Missionary dataset. For each column,
classifiers are trained on documents of the corresponding year and tested on all remaining issues.

the structure induction algorithm. In facts, the sequential organization of journal issues is
temporally less stable than article contents.

4.4.2. Scribners Monthly dataset. Similar experiments have been carried out on the Scrib-
ners Monthly journal. Results using no feature selection are shown on the top of figure 8. The
average accuracy is 81.0%, for isolated page classification and 89.6% for sequential classi-
fication (the error reduction is 42.5%). After feature selection, the average accuracy drops
to 75.3% for the isolated page classifier, while it remains similar for the sequential classifier.
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Figure 8. Isolated vs. sequential page classification on the Scribners Monthly dataset.

Noticeably, feature selection has different effects on the two datasets when coupled with
the Naive Bayes classifier: it tends to improve accuracy for the American Missionary and
tends to worsen for the Scribners Monthly. On the other hand, the HMM is almost insensitive
to feature selection, in both datasets. This is apparently counterintuitive since the emission
model is almost the same for the two classifiers (except for the EM tuning of emission
parameters in the case of the HMM). However, it should be remarked that the Naive Bayes’
final prediction is biased by the class prior (Eq. (16)) while the HMM’s prediction is biased
by extracted grammar (Eqs. (11)–(15)). The latter provides more robust information that
effectively compensates for the crude approximation in the emission model, prescribing
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conditional word independence. This robustness also affects positively performance if a
suboptimal set of features is selected for representing document pages.

4.5. Learning using ergodic HMMs

The following experiments provide a basis for evaluating the effects of the structure learning
algorithm presented in Section 3.2. In the present setting, we trained an ergodic HMM with
ten states (each state mapped to exactly one class). Emission parameters were initialized
using Eq. (6) while transition probabilities were initialized with random values. In this case
the EM algorithm takes the full responsibility for extracting sequential structure from data.
After training, arcs with associated probability less than 0.001 were pruned away.

The evaluation was performed using the American Missionary dataset, training on single
years as in the previous set of experiments. As expected (see figure 9), results are worse
than those obtained in conjunction with the grammar extraction algorithm. However, the
trained HMM outperforms the Naive Bayes classifier also in this case.

4.6. Effects of the training set size

To investigate the effects of the size of the training set we propose a set of experiments
alternative to those reported in Section 4.4. In these experiments we selected a variable
number of sequences (journal issues) n for training (randomly chosen in the dataset) and
tested generalization on all the remaining sequences. The accuracy is then reported as a
function of n, after averaging over 20 trials (each trial with the same proportion of training
and test sequences). All these experiments were performed on the American Missionary
dataset. As shown in figure 10, generalization for both the isolated and the sequential
classifier tends to saturate after about 15 sequences in the training set. This is slightly more

Figure 9. Comparison between the ergodic HMM and the HMM based on the extracted grammar.
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Figure 10. Learning curve for the sequential and the isolated classifiers.

than the average number of issues in a single year. The sequential classifier consistently
outperforms the isolated page classifier.

4.7. Learning with partially labeled documents

Since labeling is an expensive human activity, we evaluated our system also when only
a fraction of the training documents pages are labeled. In particular, we are interested in
measuring the loss of accuracy due to missing page labels. Since structure learning is not
feasible with partially labeled documents, we used in this case an ergodic (fully connected)
HMM with ten states (one per class).

We have performed six different experiments on the American Missionary dataset, using
different percentages of labeled pages. In all the experiments, all issues of year 1884 form
the training set and the remaining issues form the test set. Table 3 shows detailed results of
the experiment. Classification accuracy is reported for single classes and for the entire test
set. Using 30% of labeled pages the HMM fails to learn a reliable transition structure and the
Naive Bayes classifier (trained with EM as in Nigam et al. (2000)) obtains higher accuracy
(Table 4). However, with higher percentages of known page labels the comparison favors
again the sequential classifier. Using only 50% of labeled pages, the HMM outperforms the
isolated page classifier that was trained on completely labeled data. With greater percentages
of labeled documents, performances begin to saturate reaching a maximum of 80.24% when
all the labels are known (this corresponds to the result obtained in Section 4.5).

5. Conclusions

We have presented a text categorization system for multi-page documents which is ca-
pable of effectively taking into account contextual information to improve accuracy with
respect to traditional isolated page classifiers. Our method can smoothly deal with unlabeled
pages within a document, although we have found that learning the HMM structure further
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Table 3. Results achieved by the model trained by Expectation-Maximization, varying percentage of labeled
documents.

Percentage of labeled documents

Category 30 50 70 90 100

Contents 100 100 100 100 100

Editorial 21.12 59.67 58.6 67.62 71.41

South 83.58 69.73 84.94 84.34 84.19

Indians 0 55.03 51.68 50.34 58.39

Chinese 27.45 83.66 76.47 75.82 75.16

Bur.WW 43.22 63.74 63 64.84 65.93

Child.P. 78.26 73.91 58.7 78.27 76.09

Communications 91.4 91.4 93.55 93.55 93.55

Receipts 89.27 98.68 97.36 98.31 98.31

Advertisements 69.77 93.02 90.7 90.7 90.7

Total 55.66 73.54 75.66 78.7 80.24

Table 4. Results achieved by Naive Bayes classifier trained by Expectation-Maximization, varying percentage
of labeled documents.

Percentage of labeled documents

Category 30 50 70 90 100

Contents 100 100 98.82 100 100

Editorial 32.15 45.08 48.04 60.26 63.11

South 61.75 73.95 79.22 70.48 71.84

Indians 33.33 52.67 45.33 43.33 44.30

Chinese 73.03 75.66 66.45 68.42 60.78

Bur.WW 69.85 67.65 70.96 69.85 66.30

Child.P. 73.91 63.04 47.83 47.83 45.65

Communications 91.4 92.47 91.40 92.47 92.47

Receipts 97.74 98.11 98.11 98.30 98.31

Advertisements 58.14 62.79 55.81 55.81 62.79

Total 61.81 69.35 70.47 72.03 72.57

improves performance compared to starting from an ergodic structure. The system uses
OCR extracted words as features. Clearly, richer page descriptions could be integrated in
order to further improve performance. For example, most optical recognizers output infor-
mation about the font, size, and position of text, that may be important to help discriminating
between classes. Moreover, OCR text is noisy and another direction for improvement is to
include more sophisticated feature selection methods, like morphological analysis or the
use of n-grams (Cavnar and Trenkle, 1994; Junker and Hoch, 1998).
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Another aspect is the granularity of document structure being exploited. Working at
the level of pages is straightforward since page boundaries are readily available. However,
actual category boundaries may not coincide with page boundaries. Some pages may contain
portions of text belonging to different articles (in this case, the page would belong to
multiple categories). Although this is not very critical for single-column journals such as
the American Missionary, the case of documents typeset in two or three columns certainly
deserves attention. A further direction of investigation is therefore related to the development
of algorithms capable of performing automatic segmentation of a continuous stream of text,
without necessarily relying on page boundaries.

Finally, text categorization methods that take document structure into account may be ex-
tremely useful for other types of documents natively available in electronic form, including
web pages and documents produced with other typesetting systems. In particular, hypertexts
(like most documents in the Internet) are organized as directed graphs, a structure that can be
seen as a generalization of sequences. However, devising a classifier that can capture context
in hypertexts by extending the architecture described in this paper is still an open problem: al-
though the extension of HMMs from sequences to trees is straightforward (see e.g. Diligenti
et al. (2001)), the general case of directed graphs is difficult because of the presence of cycles.
Preliminary research in this direction (based on simplified models incorporating graphical
transition structure) is presented in Diligenti et al. (2000) and Passerini et al. (2001).
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Notes

1. A related formulation would consist of assigning a global category to a whole multi-page document, but this
formulation is not considered in this paper.

2. After observing the text.
3. A Bayesian network is an annotated graph in which nodes represent random variables and missing edges

encode conditional independence statements amongst these variables. Given a particular state of knowledge,
the semantics of belief networks determine whether collecting evidence about a set of variables does modify
one’s belief about some other set of variables (Jensen, 1996; Pearl, 1988).

4. We adopt the standard convention of denoting variables by uppercase letters and realizations by the correspond-
ing lowercase letters. Moreover, we use the table notation for probabilities as in Jensen (1996); for example
P(X) is a shorthand for the table [P(X = x1), . . . , P(X = xr )] and P(X, y | Z) denotes the two-dimensional
table with entries P(X = xi , Y = y | Z = zk).

5. Of course this does not mean that the category is independent of the context.
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