
Heterogeneous Learner for Web Page Classification

Hwanjo Yu, Kevin Chen-Chuan Chang, Jiawei Han
University of Illinois at Urbana-Champaign

Department of Computer Science
University of Illinois, Urbana-Champaign, IL, USA�

hwanjoyu, kcchang, hanj � @uiuc.edu

Abstract

Classification of an interesting class of Web pages (e.g.,
personal homepages, resume pages) has been an interest-
ing problem. Typical machine learning algorithms for this
problem require two classes of data for training: positive
and negative training examples. However, in application
to Web page classification, gathering an unbiased sample
of negative examples appears to be difficult. We propose
a heterogeneous learning framework for classifying Web
pages, which (1) eliminates the need for negative training
data, and (2) increases classification accuracy by using two
heterogeneous learners. Our framework uses two hetero-
geneous learners – a decision list and a linear separator
which complement each other – to eliminate the need for
negative training data in the training phase and to increase
the accuracy in the testing phase. Our results show that our
heterogeneous framework achieves high accuracy without
requiring negative training data; it enhances the accuracy
of linear separators by reducing the errors on “low-margin
data”. That is, it classifies more accurately while requiring
less human efforts in training.

1. Introduction

Automatic categorization or classification of Web pages
has been studied extensively, and most of those classifica-
tion techniques are usually based on similarity between doc-
uments’ contents or their hyperlink structures. However,
the categories generated by those techniques do not always
fit end-users’ search purposes since they cannot consider
each user’s specific interest. Let’s think about a query “Find
XML experts” on a common search engine. We may want
to hit the keyword “XML” or “experts” on any search en-
gine, and try to refine the search results repeatedly until we
collect a fair amount of XML expert pages. However, if we
are able to specify a search class or domain into “resume” or
“personal homepage,” we could simply apply a search term

“XML” within the classes of resume or personal homepage
to collect XML expert pages.

Automatic classification of specific types of documents
such as newspaper articles, patent documents, calls for pa-
pers, and personal homepage have been proposed for this
problem[7, 15]. However, these solutions have some lim-
itations: they are quite dependent on specific classes, and
they require laborious work to create a new classifier of in-
terest. In particular, they require collecting positive training
data and unbiased negative training data that uniformly rep-
resents the negative class. Finally, they show relatively poor
performance particularly on classifying low-margin data.
Low-margin data is the data that is relatively close to the
separator, thus is often misclassified by linear separators.
For example, if a personal homepage has not much per-
sonal information, it may be close to the separator of per-
sonal homepage class, and thus becomes a low-margin data.
This problem is a well-known drawback of linear separa-
tors such as Winnow, Perceptron, and Perceptron-like algo-
rithms [14, 18, 4, 6, 19, 12].

We present here a new machine learning framework that
exactly matches these problems of Web page classification.
Our framework uses two heterogeneous learners – a deci-
sion list and a linear separator which complement each other
– in both training and testing phases. There have been many
attempts to use multiple homogeneous learners to increase
classification accuracy. However, combination of homo-
geneous learners generally does not overcome the genuine
weaknesss of each learner. The purpose of the decision list
in training phase is to eliminate the need for negative train-
ing data in constructing a linear separator. The decision list
in testing phase enhances the accuracy of the linear separa-
tor especially for low-margin data. As a result, our hetero-
geneous framework (1) makes easier to create a classifier
for a new concept by reducing the work to collect training
documents, and also (2) increases the final classification ac-
curacy by complementing the weakness of linear separators
for low-margin data.

The contributions of our framework are the following.

� Our heterogeneous framework enables pre-filtering
stage in training phase to induce negative training data
from universe and positive training data. Previous ma-
chine learning schemes need to classify large number
of pages manually to prepare unbiased positive and
negative training documents. The pre-filtering stage
makes possible to construct a classifier without requir-
ing negative training data, which speeds up the process
of creating a classifier for a new class, but also opens
a possible way to support type-specific queries on the
Internet from sample pages.

� We propose a new early-inclusion stage for correctly
classifying low-margin data. Linear separators such
as Winnow, Perceptron, and SVMs have been studied
extensively and have proved their outstanding perfor-
mances when the environment has high dimensions,
the number of active features is small, and the in-
stance spaces are sparse. Consequently, the linear sep-
arators are the most widely used algorithms for Web
page classification problems since Web page classifi-
cation has the same properties as environment these
linear separators work well. However, they have
showed weakness in classification of low-margin data
[14, 18, 4, 6, 19, 12]. Our early-inclusion stage com-
plements this weakness and achieves higher accuracy
for low-margin data without sacrificing any perfor-
mance on other data.

The rest of the paper is organized as follows. Section 2
describes the problem and our approach in detail. Section
3 presents the algorithm of each stage in the framework. In
Section 4, we describe the experiment environment and re-
sults, and we evaluate the experiment results. Section 5 de-
scribes the related work. The conclusions and future works
are discussed in Section 6.

2 Problem Description and Heterogeneous
Framework

A typical algorithm for learning linear separators con-
sists of two phases: training phase and testing phase (Figure
1). In training phase, the algorithm reads positive and neg-
ative training data to construct a linear separator (LS). The
testing phase classifies testing documents by the LS con-
structed in the training phase. The typical learning frame-
work suffers from the need of negative training data and the
inherent inaccuracy for classifying low-margin data as we
briefly mentioned in Section 1. To address these problems,
we propose a heterogeneous framework built upon a lin-
ear separator (LS). Specifically, we introduce two stages:
To eliminate the need for collecting class-specific nega-
tive data, our heterogeneous framework uses a pre-filtering

Figure 1. The typical learning framework

stage in the training phase. To improve classification ac-
curacy on the low-margin data, the testing phase adopts an
early-inclusion stage. The two stages use a decision list
(DL) having different threshold parameter values. Figure 2
shows the linear separator (LS) and the decision list (DL)
of the pre-filtering and early-inclusion stages in each phase
of the framework. The DL of the pre-filtering and early-
inclusion stages is constructed in the training phase I, and
the LS is trained using pre-filtering DL in the training phase
II. The early-inclusion DL and LS classify the testing data
in the testing phase. In the following, we describe the prob-
lems and the approaches of each stage in details.

Figure 2. Our heterogeneous framework

2.1 Pre-filtering: Inducing Negative Training
Data

An important issue to make a good linear separator is
to prepare a good set of training documents that uniformly
represent the concept without any bias. Since we are deal-
ing with binary classification that separates a class of inter-
est from the others, users would need to collect two sets of
training data, the sample of class

�
and its complement � � .

The portion of the class
�

in the universe (��� ���) is usually
much smaller than the portion of its complement (����� ���).
For instance, ”college admission pages” take very small per-
centages of the Internet. ��� ��� may be less than 0.1%, and
����� ��� more than 99.9% in this case. Collecting nega-
tive training data � � requires significant amount of man-
ual classifications because the sample of negative data must
represent the entire universe while excluding the instances
of
�

.
One might argue that using a sample of universal set it-

self as a substitute for negative training data is valid since
��� ��� is usually much smaller than ����� ��� . However, a
small number of false positives in the training data can im-
pair the classification performance of linear separators, as
our experiments show in Section 4.

Our heterogeneous framework does not require collect-
ing � � to construct a classifier. Instead, it uses a uniform
sample of the universe, which can be collected automati-
cally from a repository such as DMOZ1. Once the uniform
sample is collected, it is reused for any classes, and thus
making the training of a new classifier much easier. In our
experiments, we used a random sampler to collect a uniform
sample of the universe from DMOZ automatically. The pre-
filtering stage in the training phase constructs an unbiased
sample of negative training data from the sample of the uni-
verse and the positive training data. The unbiased negative
training data is used then with the positive training data in
order to learn a linear classifier. Our results show that the
pre-filtering stage helps to achieve high accuracy without
requiring negative training data.

2.2 Early-inclusion: Identifying Low-margin
Data

The performance of linear separator such as Winnow,
Perceptron, and Perceptron-like algorithms is dependent on
the distance between the separator and example, usually re-
ferred to as “margin” [6]. In other words, most classifica-
tion errors of those linear separators come from low-margin
data, the data near the separator. The distance 	 between
an example and the separator is formulated as

	�
 ��
� ��� ����

�
������� � ��� � ����� (1)

1http://dmoz.org

where � is a weight vector of the linear function (i.e. �
��� � ��� � ��� ��������� ���!), and

� ��� � is a feature vector of an
example � (i.e. � �

� ���
� � � � ���

� � � � ���
� ��������� � � �"�

�
).

In order to identify the relationship between the distance
	 and the classification performance on real Web data, we
randomly chose three common classes – “computer shop-
ping,” “sports shopping,” and “stocks and bonds” – from
DMOZ, and classified the pages of the classes using one of
those linear separators (i.e. the Winnow algorithm). Fig-
ure 3 shows the distribution of examples at each distance
from the separator in the feature space. For this figure, we
used randomly selected 200 pages of each class to train each
class, and used another 200 pages for testing. The figure
shows that each class has fairly many pages near the sepa-
rator and that most of false negatives come from examples
near the separator. This observation shows that the inaccu-
racy of classifying low-margin data is a major problem for
Web page classification.

The distance of an example from the separator is deter-
mined by the weight (�) of every active feature (

�$# �"� �) of
the example as shown in the formula of 	 . The linear sep-
arators such as Winnow, Perceptron, or Perceptron-like al-
gorithms determine the weight of each feature according to
its likelihood to appear in the training data. Therefore, an
example would be located near the separator if the example
has a small number of discriminative positive features that
may not occur frequently in the positive class, and if the ex-
ample also has many non-positive features. For instance, if
a personal homepage has the title “personal homepage”, it
is a personal homepage even if it does not have any personal
information in it. That is, “personal homepage” in title is a
discriminative feature for the personal homepage class al-
though it does not occur frequently in the class.

Our early-inclusion stage helps to identify those misclas-
sified low-margin data. As a result, this stage reduces the to-
tal classification error rate. The early-inclusion stage iden-
tifies the small number of discriminative positive features
from positive training data and the sample of the universe,
and uses these features to label obvious positive pages be-
fore sending the documents to the next stage of linear sepa-
rator function as Figure 2 shows.

Our results show that the accuracy of classification in-
creases for all test classes we considered (i.e. personal
homepages, resume pages, and college admission pages) by
adding the early-inclusion stage, which implies the early-
inclusion stage actually identifies the discriminative fea-
tures that may not get weights high enough to be classified
correctly by the linear separators.

3 Algorithms

This section explains the algorithms of each stage in the
framework. First, we discuss the linear separator algorithms

0

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

of

 e
xa

m
pl

es

distance

Computer Shopping

false negatives
total positives

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

of

 e
xa

m
pl

es

distance

Sports Shopping

false negatives
total positives

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

of

 e
xa

m
pl

es

distance

Stocks and Bonds

false negatives
total positives

Figure 3. The distribution of misclassified examples according to their distance from the separator
(The distribution of false positives is also similar, but we only show false negatives because the
early-inclusion deals with only false negatives. See Section 4 for details)

that can be plugged into this framework. After that, we de-
scribe the feature ranking algorithm that we use for the pre-
filtering and early-inclusion stages, and explain how each
stage uses this feature ranking algorithm.

3.1 Linear separators

Different kinds of linear separators can be used in our
framework. In comparison, Winnow performs better than
Perceptron when the number of relevant features is small.
Perceptron performs better than Winnow when the instance
spaces are sparse [11]. We use Winnow [14] and SVM
(Support Vector Machine) [4] in our experiments because
both algorithms have shown good performance for Web
page classification and are among the most widely used for
this purpose.

3.2 Feature ranking

Both the pre-filtering and early-inclusion stages use a
feature ranking algorithm that ranks only positive features
according to their frequencies of occurrence in the positive
example and the universe. We call positive features the fea-
tures that are active in positive examples. Among such fea-
tures we distinguish strong positive features that are very
likely to appear in a positive example. We call strong posi-
tive the examples that have one or more active strong posi-
tive features. In the following we will develop a quantitative
model describing these concepts.

We would like to measure the strength of a positive fea-
ture. For this purpose, we use weights that capture the rela-
tive frequencies of the corresponding feature in the sample
of a particular class � : ��� ��� �
�� � ��� �
	��� , where � � ��� � is
the number of pages in the sample having feature � and

���
is the total number of pages in the sample. We calculate the
weight of feature � as follows:

� ���
�

��� ��� ���� ��� ��� �
��� ��� ����� � ��� � � � (2)

where
��� ��� � : the relative frequency of feature � in the sam-

ple of positive class, and
� � ��� � : the relative frequency of

feature � in the sample of the universe.
Note we do not use entropy loss to rank features because

it is hard to estimate the probabilities of positive and neg-
ative examples, or � � and ��� respectively. In this case, a
small error in estimating the probability of each class can
make a large difference in ranking result when � � is ex-
tremely small compared to � � (as we discussed in the pre-
vious section).

Our weighting formula considers the rate (����
�) and dif-
ference (

� � ����
) of each feature’s frequency in the positive

class and the universe. This formula has shown advantages
among several other weighting formulas that were explored
in our experiments (including TFIDF weights).

We will use this weighting function in constructing the
pre-filtering algorithm which uses strong features to ap-
proximate negative training data.

3.3 Pre-filtering

The pre-filtering stage uses strong positive features to fil-
ter out strong positive data from the sample of the universe,
and thus induces a good approximation of the negative train-
ing data. Figure 4 shows the pre-filtering algorithm.

We first extract positive features from � � and � � , and
rank them by the weighting formula in Equation (2). (Steps
1 through 3 of the algorithm in Figure 4). We take out
a chunk of top ranked features by applying the following
threshold function � onto the list (set) of positive features
(Steps 4 and 5 of the algorithm in Figure 4).

�
! #"$�&%�'�(�*) ��� � � � (3)

where +
-,.� � �0/1��+ �&2 �3+54767�98 2 �3+;:&6��3/<+5/<= 2 � 2 ">+5?@4 2 /A�
�B67 2 �$6�C�?& 2 �D+ � �FE �HGI� �.J .

The threshold � is the worst ranking among the strongest
positive features in each document. For example, say that
we have only three positive documents � � , � � , and � � , and

Input: � � a sample of the positive class, � � a sample
of the universe
Output: � � a sample of the negative class needed for
training the linear separator stage
Notation: A document � denotes a set of its active
features. (� G � means a feature � is present in docu-
ment � . � G#� � implies � G � �1E �0G � �)
Algorithm:

1. Extract all positive features
�

from � � (
�
� %�'�� � �)

2. Rank the features in
�

based on the weighting
function � ���

�
(� ���

�
 � � � %��� � � %�� � �
��� ��� �3� � � ��� � �)

3. Let) ��� � returns the ranking of feature � (a
smaller number indicates higher ranking.)

4. Compute a threshold � with the following for-
mula
�
! ">� %�'�(��) ��� � � ,
+
�, � � �/1� + � 2 �3+54�67�98 2 �3+ :@6�� /<+5/<= 2 � 2 "$+5?@4 2
/A� �B67 2 �>6�C ?& 2 �D+ � � E ��G#� � J .

5. Extract strong positive features � by applying �
to
�

(�
-,.� G � �) ��� � � � J)
6. Extract negative documents � � (� �
 , � G

� � � �
	��
� J)
Figure 4. The pre-filtering algorithm

the global rankings) ��� � of the strongest positive feature in
each document are 11, 14, and 7 respectively. (That is, fea-
ture � with) ��� �
���� is the strongest positive feature in
document � � .) Then we set the threshold � to 14, which is
the lowest ranking of them. This heuristic for the thresh-
old � fairly reasonably approximates negative training ex-
amples which does not significantly impact classification
performance.

The negative training data � � is constructed by exclud-
ing the documents having any of those strong features �
from the sample of the universe � � . We assume that the
document � is positive if the intersection ��	�� not empty.
We exclude such documents from � � to obtain an induced
sample of the negative class.

3.4 Early-inclusion

In early-inclusion stage, we scan test documents to see if
they have any discriminative features. If they have, we label
them as positives, and exclude them from the next stage. We
will call a feature � as discriminative if) ��� � � ��� (i.e. the
feature � is ranked higher than ���) for some threshold)�� .

We apply a linear function computed in the training phase
only to the rest of the test documents which are not labeled
in the early-inclusion stage. We induce the discriminative
positive feature set by applying another smaller threshold
� � to the same feature ranking function) . Note that � � is
smaller than � because the discriminative positive feature
set needs stronger requirement of positivity.

Thus, the set of discriminative positive features � � is

� �
 ,3� G � �) ��� � � � � J (4)

Documents from the testing set � having at least one of
active features from ��� are labeled positive such that

� ��
 , � GI� � �
	�� ���
� J (5)

The documents that are not labeled in the early-inclusion
stage are routed into the linear separator.

The threshold ��� can be adjusted through a validation
process, such that it is set as high as possible under the con-
dition that the early-inclusion (����) does not introduce false
positive. Our experiment (Table 1 in Section 4) shows that
the early-inclusion stage does not increases the number of
false positives while it does decrease the number of false
negatives.

This two-stage classification can be viewed as a serial
connection of a simple decision list and a linear separator
because the early-inclusion is essentially a decision list us-
ing discriminative features. Our experiments described in
Section 4 show that this combination of two classifiers com-
plements the weakness of each other.

4 Experiments

4.1 Experimental Methodology

To test our framework, we chose three classes: personal
homepages, college admission pages, and resume pages.
For each class, we collected 233, 97, and 100 positive train-
ing documents respectively. We randomly selected 2514
pages from DMOZ to construct a uniform sample of the
universe. For each class, we tested around 600 pages that
are not duplicated with the training data. In reality, per-
sonal homepages are extremely diverse, so we confined the
personal homepage class to pages having personal informa-
tion. Pages having only images or extremely small amount
of text were removed from the experiments.

We extracted features from different parts of a page—
URL, title, headings, link, anchor-text, normal text, and
meta tags. Each feature is a predicate indicating whether
each term or special character appears in each part, e.g.,
‘ � ’ in URL, or a word ‘homepage’ in title. We did not use
stemming or a stoplist because it could hurt performance in

Web page classification. For example, a common stopword,
“I” or “my”, is a good indicator of a student homepage.

As we mentioned in previous section, we performed the
experiments using two different linear separators, Winnow
[14] and SVM (Support Vector Machine) with linear kernel
function [4]. We use SNOW (Sparse Network Of Winnow)
[2] for Winnow implementation, and SVM LIGHT [9] for
SVM implementation.

4.2 Results

We first show the performance comparison on the three
classes between the typical framework and our heteroge-
neous framework. After that, we discuss the concrete im-
pacts of early-inclusion stage on performance.

4.2.1 Performance comparison

Table 1 shows the classification error rates of Winnow and
SVM respectively on the three classes “resume”, “college
admission”, and “personal homepage.” Typical learning
framework that uses positive training data and samples of
universe as negative training data shows high rates of false
negatives. This problem is the consequence of placing too
deep in the positive class. Using pre-filtering stage, the
false negatives decrease substantially without much sacri-
ficing the performance on negative testing documents. The
early-inclusion stage decreases even more the classification
errors on the positive examples while keeping the classifica-
tion errors on the negative examples from increasing (Table
1).

4.2.2 Impact of the early-inclusion stage on perfor-
mance and data margin

The early-inclusion stage uses a decision list. Figure
5 shows the performance gain by serializing the early-
inclusion stage and the linear classification stage for per-
sonal homepage classification. The first graph in Figure 5
shows the number of false negatives at each distance when
using only a linear separator (i.e. Winnow using the SNOW
[2]). In this graph, most errors of the linear separator come
from low-margin data. The second graph in the figure shows
the classification errors when using only a decision list of
the early-inclusion stage. The classification errors of the
second graph are fairly spreaded over every distance com-
pared to the linear separator graph. The last graph of the
figure 5 shows the reduced classification errors using the
two stages connected serially. In this case, the decision
list of early-inclusion stage complements the linear sepa-
rator’s shortcoming by reducing the errors on low-margin
data, which results in higher overall accuracy. Figures 6
and 7 show the same results when classifying resume pages
and college admission pages respectively.

4.3 Discussion

When we classify Web pages manually, we may consider
many factors such as title, text, url, and so on as the typical
machine learning algorithms do. However, a small num-
ber of discriminative positive features could determine the
class of a page regardless of the other factors. (e.g. if we
see ”personal homepage” on title, it is likely to be a personal
homepage no matter what content it has.) A learning algo-
rithm such as linear separators (i.e. Winnow, Perceptron,
or Perceptron-like algorithms) may not weigh the discrimi-
native features high enough. This problem can occur if the
features occur infrequently. In this case, the linear separa-
tor can misclassify a page if the page has much non-relevant
information. Usually, the distance of those pages are close
to the separator as we discussed in Section 2.

Our framework identifies discriminative features using
the feature ranking algorithm we explained in Section 3.
The early-inclusion stage uses discriminative features to in-
clude low-margin positive data in the positive class, pre-
venting misclassification of this data by a linear separator.
Thus, the final classification accuracy increases.

5 Related Work

The research community has been extensively working
on text classification problems, and there have been many
attempts to extend this work to Web page classification
[5, 17, 1, 3]. Most of those classification techniques are
usually based on similarity of documents or their hyperlink
structures. They usually require pre-defined categories that
cover the entire target domain and that each class is assumed
to be mutually exclusive.

Matsuda and Fukushima identified Web page type classi-
fication problem, and tried to solve it by human description
of structural characteristics of a type [16]. Yi and Sundare-
san used Naive bayes method with structured vector model
[21]. It performs well on structured or tightly formatted
semi-structured documents such as US Patent data (XML
sharing same DTD) or Resumes (tightly formatted docu-
ments), but those structured vector model is not likely to
perform well for classification of normal HTML documents
having various formats. Glover et al. classified ”personal
homepage” and ”call-for-paper.” [7] They classified manu-
ally a large amount of documents to collect negative train-
ing data and used SVM with fixed set of features. Similar
methods were used for classification of newspaper articles
[8] and patent documents [15]. Most of these works are
quite dependent on specific classes, and they require much
efforts to create a new classifier for a new class of interest.

There are some recent papers on multistage classification
[10, 20, 13] that use the arrangement of homogeneous clas-
sifying elements to achieve better quality of classification.

Winnow SVM
T T+P T+P+E T T+P T+P+E

f- f+ f- f+ f- f+ f- f+ f- f+ f- f+
Resume 6.38 2.06 4.26 0.19 1.06 0.19 3.19 0.56 3.19 0.56 1.06 0.56

Admission 8.25 0.00 2.06 0.89 1.03 0.89 3.09 0.00 3.09 0.89 2.06 0.89
Homepage 27.67 0.22 6.29 3.56 3.50 3.56 13.29 0.45 6.99 2.67 5.60 2.67

T: typical learning framework using positive training data and the universe as a substitute for the negative training data. T+P: typical
learning framework + pre-filtering stage. T+P+E: typical learning framework + pre-filtering stage + early-inclusion stage. f-: % of false
negatives. f+: % of false positives.

Table 1. Error rate (%) comparison of each framework using Winnow and SVM

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3

of

 e
xa

m
pl

es

distance

Linear separator

false negatives
total positives

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3

of

 e
xa

m
pl

es

distance

Decision list

false negatives
total positives

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3

of

 e
xa

m
pl

es

distance

Decision list + Linear separator

false negatives
total positives

Figure 5. Advantage of the two heterogeneous stages for personal homepage classification

However, like typical learning algorithms, they also require
the positive and negative training sets.

H. Yu et al. [22] also propose a scheme to remove the
requirement of negative training pages in Web page classi-
fication. The algorithm uses a rule-based algorithm in the
first stage to map an initial boundary from positive and un-
labeled data. After that, it iterates SVMs to induce an accu-
rate class boundary from the initial boundary. The marginal
property of SVM guarantees the convergence of the bound-
ary.

Our framework also uses heterogeneous stages. How-
ever, we identify another intrinsic problem of Web page
classification – high error on low-margin data. By using
the two heterogeneous learners in both training and testing
phases, we obviate the need for negative training data, while
at the same time reduce the errors on low-margin data.

6 Conclusions

In this paper, we propose a heterogeneous learning
framework for classifying Web pages, which (1) eliminates
the need for negative training data, and (2) increases classi-
fication accuracy by using two heterogeneous learners. Our
framework uses two heterogeneous learners – a decision list
and a linear separator which complement each other – to
eliminate the need for negative training data in the training

phase and to increase the accuracy in the testing phase. Our
results show that our heterogeneous framework achieves
high accuracy without requiring negative training data; it
enhances the accuracy of linear separators by reducing the
errors on “low-margin data”. That is, it classifies more ac-
curately while requiring less human efforts in training.

References

[1] D. Boley, M. Gini, R. Gross, E.-H. S. Han, K. Hast-
ings, G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Partitioning-based clustering for web document categoriza-
tion. Decision Support Systems, 1999.

[2] A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth.
SNoW User Guide. Cognitive Computation Group, Com-
puter Science Department, University of Illinois at Urbana-
Champaign, August 1999.

[3] H. Chen, C. Schuffels, and R. Orwig. Internet categoriza-
tion and search: A self-organizing approach. Journal of
Visual Communication and Image Representation, 7(1):88–
102, 1996.

[4] C. Cortes and V. Vapnik. Support vector networks. Machine
Learning, (20):273–297, 1995.

[5] M. Craven and S. Slattery. Relational learning with statis-
tical predicate invention: Better models for hypertext. Ma-
chine Learning, 43(1/2):97–119, 2001.

[6] Y. Freund and R. E. Schapire. A short introduction to boost-
ing. Journal of Japanese Society for Artificial Intelligence,
5(14):771–780, 1999.

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

of

 e
xa

m
pl

es

distance

Linear separator

false negatives
total positives

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

of

 e
xa

m
pl

es

distance

Decision list

false negatives
total positives

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

of

 e
xa

m
pl

es

distance

Decision list + Linear separator

false negatives
total positives

Figure 6. Advantage of the two heterogeneous stages for resume page classification

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

of

 e
xa

m
pl

es

distance

Linear separator

false negatives
total positives

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

of

 e
xa

m
pl

es

distance

Decision list

false negatives
total positives

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

of

 e
xa

m
pl

es

distance

Decision list + Linear separator

false negatives
total positives

Figure 7. Advantage of the two heterogeneous stage for college admission page classification

[7] E. J. Glover, G. W. F. S. Lawrence, W. P. Birmingham,
A. Kruger, C. L. Giles, and D. M. Pennock. Improving cate-
gory specific web search by learning query modifications. In
Symposium on Applications and the Internet, SAINT 2001,
San Diego, California, January 8-12, January 8-12 2001.

[8] J. Hayes and W. S. P. A system for content-based indexing
of a database of news stories. In Proceedings of Second An-
nual Conference on Innovatative Applications of Artificial
Intelligence, pages 1–5, 1990.

[9] T. Joachims. Making large-scale svm learning practical. In
B. Scholkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT-Press,
1999.

[10] C. Kaynak and E. Alpaydin. Multistage cascading of mul-
tiple classifiers: One man’s noise is another man’s data. In
ICML, 2000.

[11] J. Kivinen, M. K. Warmuth, and P. Auer. The Perceptron
algorithm vs. Winnow: linear vs. logarithmic mistake bound
when few input variables are relevant. Artificial Intelligence,
1-2:325–343, 1997.

[12] A. R. Klivans and R. A. Servedio. Learning dnf in time
���������
	���

. citeseer.nj.nec.com/329971.html.
[13] A. Kosorukoff. Genetic synthesis of cascade structures for

particle classification. In D. Whitley, editor, Late Break-
ing Papers at the 2000 Genetic and Evolutionary Computa-
tion Conference, pages 170–174, Las Vegas, Nevada, USA,
8 2000.

[14] N. Littlestone. Learning quickly when irrelevant attributes
abound. a new linear-threshold algorithm. Machine Learn-
ing, (2):285–318, 1988.

[15] H. Mase, H. Tsuji, H. Kinukawa, Y. Hosoya, K. Koutani, and
K. Kiyota. Experimental simulation for automatic patent

categorization. In Proceedings of Advances in Production
Management Systems, pages 377–382, 1996.

[16] K. Matsuda and T. Fukushima. Task-oriented world wide
web retrieval by document type classification. In CIKM ’99,
Kansas City, Mo, USA.

[17] H.-J. Oh, S. H. Myaeng, and M.-H. Lee. A practical hy-
pertext categorization method using links and incrementally
available class information. In SIGIR 2000, Athens, Greece,
2000.

[18] F. Rosenblatt. The perceptron: A probabilistic for informa-
tion storage and organization in the brain. Psychological
Review, (65):386–407, 1958. Reprinted in Neurocomputing
(MIT Press, 1988).

[19] R. A. Servedio. On pac learning using winnow,
perceptron, and a perceptron-like algorithm. cite-
seer.nj.nec.com/329971.html.

[20] J. Smith and S. Chang. Multi-stage classification of images
from features and related text. In EDLOS Workshop, San
Miniato, Italy, 1997.

[21] J. Yi and N. Sundaresan. A classifier for semi-structured
documents. In KDD 2000, Boston, MA USA, 2000.

[22] H. Yu, J. Han, and K. C.-C. Chang. Pebl: Positive-example
based learning for web page classification using svm. In
KDD, Edmonton, Alberta, Canada, 2002.

