
Combining Labeled and Unlabeled Data for MultiClass Text

Categorization

Rayid Ghani rayid.ghani@accenture.com

Accenture Technology Labs, 161 N Clark St, Chicago, IL 60601 USA

Abstract

Supervised learning techniques for text clas-
si�cation often require a large number of la-

beled examples to learn accurately. One way
to reduce the amount of labeled data required
is to develop algorithms that can learn e�ec-
tively from a small number of labeled exam-
ples augmented with a large number of unla-
beled examples. Current text learning tech-
niques for combining labeled and unlabeled,
such as EM and Co-Training, are mostly ap-
plicable for classi�cation tasks with a small
number of classes and do not scale up well
for large multiclass problems. In this pa-
per, we develop a framework to incorporate
unlabeled data in the Error-Correcting Out-
put Coding (ECOC) setup by �rst decompos-
ing multiclass problems into multiple binary
problems and then using Co-Training to learn
the individual binary classi�cation problems.
We show that our method is especially useful
for text classi�cation tasks involving a large
number of categories and outperforms other

semi-supervised learning techniques such as
EM and Co-Training. In addition to be-
ing highly accurate, this method utilizes the
hamming distance from ECOC to provide
high-precision results. We also present re-
sults with algorithms other than co-training
in this framework and show that co-training
is uniquely suited to work well within ECOC.

1. Introduction

A major concern with supervised learning techniques
for text classi�cation is that they often require a large
number of labeled examples to learn accurately. Col-
lecting a large number of labeled examples can be a
very expensive process, thus emphasizing the need for

algorithms that can provide accurate classi�cations af-
ter getting only a few labeled examples.

One way to reduce the amount of labeled data required
is to develop algorithms that can learn from a small
number of labeled examples augmented with a large
number of unlabeled examples. Unlabeled examples,
especially in the case of text classi�cation problems,
are much less expensive and easier to obtain than la-
beled examples. The Web contains a huge amount of
text data that can serve as unlabeled data for many
classi�cation tasks. Collecting this text is often cheap
since web spiders and crawlers can be programmed to
automatically do this task.

Recently, there has been interest in supervised learning
algorithms that combine labeled and unlabeled data.
Examples of such research include using Expectation-
Maximization to estimate maximum a posteriori pa-
rameters of a generative model for text classi�cation
(Nigam et al., 2000), using a generative model built
from unlabeled data to perform discriminative classi-
�cation (Jaakkola & Haussler, 1999), and using trans-
ductive inference for support vector machines to op-

timize performance on a speci�c test set (Joachims,
1999). These studies have shown that using unla-
beled data can signi�cantly improve classi�cation per-
formance, especially when labeled training data are
sparse.

A related set of research uses labeled and unlabeled
data in problem domains where the features naturally
divide into two disjoint sets. Data sets whose fea-
tures naturally partition into two sets, and algorithms
that use this division, fall into the co-training setting
(Blum & Mitchell, 1998). They present an algorithm
for classifying web pages that builds two classi�ers:
one over the words that appear on the page, and an-
other over the words appearing in hyperlinks pointing
to that page. Blum and Mitchell (1998) also show that
PAC-like guarantees on learning with labeled and un-



labeled data hold under the assumptions that (1) each
set of features is su�cient for classi�cation, and (2)
the two feature sets of each instance are conditionally
independent given the class.

Most studies on text classi�cation with Co-training
type algorithms (Blum & Mitchell, 1998; Nigam &
Ghani, 2000) have focused on small, often binary,
problems and it is not clear whether their conclusions
would generalize to real-world classi�cation tasks with
a large number of categories. Experimental evalua-
tions of EM for text classi�cation (Nigam et al., 2000)
have also been conducted on data sets with a relatively
small number of categories, with the largest number
of classes being 20(for the 20-Newsgroups Data set).
On the other hand, research in ensemble learning tech-
niques has shown that Error-Correcting Output Codes
(ECOC) are well suited for classi�cation tasks with a
large number of categories but only with labeled ex-

amples(Ghani, 2000).

In this paper, we present an approach for multi-
class classi�cation that combines labeled and unla-
beled data. We decompose multiclass problems into
multiple binary problems using error-correcting out-
put codes and then use Co-Training to learn the in-
dividual binary classi�cation problems. We show that
our approach is especially useful for text classi�cation
problems involving a large number of categories and
outperforms several other algorithms that are designed
to combine labeled and unlabeled data. We also �nd
that combining ECOC and Co-training results in a
system that can provide a smooth tradeo� between
recall and precision and can be used for high-precision
classi�cation.

2. Error Correcting Output Coding

Error Correcting Output Coding (ECOC) (Dietterich
& Bakiri, 1995) has been shown to perform extraordi-
narily well for text classi�cation (Berger, 1999; Ghani,
2000; ?). ECOC converts a m-class supervised learn-
ing problem into n binary supervised learning prob-
lems. Any learning algorithm that can handle two-
class learning problems can then be applied to learn
each of these n problems. The algorithm works by as-
signing each class a unique binary string of length n,
referred to as codewords (Dietterich & Bakiri, 1995).
Then we train n classi�ers to predict each bit of the
string. The predicted class is the one whose codeword
is closest to the codeword produced by the classi�ers.
The distance metric we use in our experiments is the
Hamming distance which counts the number of bits
that the two codewords di�er by. This process of map-
ping the output string to the nearest codeword is iden-

tical to the decoding step for error-correcting codes
(Bose & Ray-Chaudhri, 1960; Hocuenghem, 1959).

� Training Phase

1. Given a problem with m classes, create an m
x n binary matrix M (where n can be less
than m).1

2. Each class is assigned one row of M (Each
column divides the entire class space into two
parts).

3. Train the base classi�er to learn the n binary
functions (one for each column since each col-
umn divides the data set into two groups).

� Test Phase

1. Apply each of the n single-bit classi�ers to
the test example.

2. Combine the predictions to form a binary
string of length n.

3. Classify to the class with the nearest code-
word (In this paper, we use hamming dis-
tance as the distance measure).

An interesting fact about using ECOC for classi�ca-
tion is that an m-class problem can be decomposed
into fewer than m binary problems. This results in a
classi�cation algorithm that scales up sublinearly with
the number of classes and can be signi�cantly more ef-

�cient than Naive Bayes or SVMs which only scale up
linearly.

3. The Co-Training Setting

The co-training setting applies when a data set has
a natural division of its features. For example, web
pages can be described by either the text on the web

page, or the text on hyperlinks pointing to the web
page. Traditional algorithms that learn over these
domains ignore this division and pool all features to-
gether. An algorithm that uses the co-training setting
may learn separate classi�ers over each of the feature
sets, and combine their predictions to decrease clas-
si�cation error. Co-training algorithms using labeled
and unlabeled data explicitly leverage this split during
learning.

Blum and Mitchell (1998) formalize the co-training
setting and provide theoretical learning guarantees
subject to certain assumptions. In the formalization,
each instance is described by two sets of features.

1More information about creating the matrix and exper-
iments with various types of matrices/codes can be found
in (Ghani, 2000; Ghani, 2001)



Blum and Mitchell (1998) prove under certain assump-
tions that co-training algorithms can learn from unla-
beled data starting from only a weak predictor. The
�rst assumption is that the instance distribution is
compatible with the target function; that is, for most
examples, the target functions over each feature set
predict the same label. For example, in the web page
domain, the class of the instance should be identi�able
using either the hyperlink text or the page text alone.
The second assumption is that the features in one set
of an instance are conditionally independent of the fea-
tures in the second set, given the class of the instance.
This assumes that the words on a web page are not
related to the words on its incoming hyperlinks, ex-
cept through the class of the web page, a somewhat
unrealistic assumption in practice.

They argue that a weak initial hypothesis over one fea-
ture set can be used to label instances. These instances

seem randomly distributed to the other classi�er (by
the conditional independence assumption), but have
classi�cation noise from the weak hypothesis. Thus,
an algorithm that can learn in the presence of classi�-
cation noise will succeed at learning from these labeled
instances.

4. Combining ECOC and Co-Training

We propose a new algorithm that aims at combining
the advantages that ECOC o�ers for supervised classi-
�cation with a large number of categories and that of
Co-Training for combining labeled and unlabeled data.
Since ECOC works by decomposing a multiclass prob-
lem into multiple binary problems, we can incorporate
unlabeled data into this framework by learning each of
these binary problems using Co-training.

The algorithm we propose is as follows:

� Training Phase

1. Given a problem with m classes, create an m
x n binary matrix M.

2. Each class is assigned one row of M.

3. Train n Co-trained classi�ers to learn the n
binary functions (one for each column since
each column divides the data set into two
groups) using both labeled and unlabeled
data.

� Test Phase

1. Apply each of the n single-bit Co-trained
classi�ers to the test example.

2. Combine the predictions to form a binary
string of length n.

3. Classify to the class with the nearest code-
word

Of course, an n-class problem can be decomposed
naively into n binary problems and co-training can
then be used to learn each binary problem, but our
approach results in a more accurate and e�cient clas-
si�er since by using ECOC we reduce the number of
models that our classi�er constructs and our approach
scales up sublinearly with the number of classes (More
details about using ECOC for e�cient text classi�ca-
tion using ECOC can be found in (Ghani, 2001). We
also believe that our approach will perform better than
the naive approach under the conditions that:

1. ECOC can outperform Naive Bayes on a multi-
class problem (which actually learns one model
for every class)

2. Co-Training can improve a single Naive Bayes

classi�er on a binary problem by using unlabeled
data

The complication that arises from ful�lling condition
2 is that unlike normal binary classi�cation problems
where Co-Training has been shown to work well, our
case involves binary problems in which each class con-
sists of multiple classes. This is the case becuase the
two classes in each binary problem are created arti-
�cially by ECOC by arbitrarily grouping together a
number of original classes. Each "new" class consists
of multiple "real" classes. In this scenario, there is no
guarantee that the underlying classi�er used by Co-
Training will be able to learn these arbitrary binary
functions.

Let's take a sample classi�cation task consisting of
classes C1 through C10 where one of the ECOC bits
partitions the data such that classes C1 through C5
are in one class (B0) and C6 through C10 are in the
other class (B1). The actual classes C1 through C10
contain di�erent number of training examples and it
is possible that the distribution is very skewed. If we
pick our initial labeled examples randomly from the
two classes B0 and B1, there is no guarantee that we
will have at least one example from all of the original
classes C1 through C10. If the set of labeled examples
that Co-training is provided does notcontain at least
one labeled example from one of the original classes,
the underlying classi�er will never be con�dent about
labeling any unlabeled example from that class. Under
the conditions that :

1. the initial labeled examples cover every "original"
class,



2. the target function for the binary partition is
learnable by the underlying classi�er,

3. the two feature sets are "redundantly su�cient"
so that the co-training algorithm can utilize unla-
beled data,

theoretically, our combination of ECOC and Co-
Training should result in improved performance by us-
ing unlabeled data.

5. Descriptions of Algorithms Used

We use Naive Bayes as the base classi�er in our exper-
iments to learn each of the binary problems in ECOC
and also as the classi�er within Co-Training. We
also use Expectation-Maximization (EM) algorithm to
compare with our proposed approach.

5.1 Naive Bayes

Naive Bayes is a simple but e�ective text classi�cation
algorithm for learning from labeled data alone (Mc-
Callum & Nigam, 1998; Lewis, 1998). We use the
multinomial model as de�ned in (McCallum & Nigam,
1998) where each word in a document is assumed to be
generated independently of the others given the class
and use Laplace smoothing to calculate word proba-
bilities.

5.2 Expectation-Maximization

We use the EM algorithm to compare with our ap-
proach when learning with both labeled and unlabeled
data. It has been shown by Nigam et al. (2000)

that this technique can signi�cantly increase text clas-
si�cation accuracy when given limited amounts of la-
beled data and large amounts of unlabeled data. How-
ever, on data sets where the assumption correlating the
classes with a single multinomial component is badly
violated, basic EM performance su�ers.

EM is an iterative statistical technique for maxi-
mum likelihood estimation in problems with incom-
plete data (Dempster et al., 1977). Given a model of
data generation, and data with some missing values,
EM will locally maximize the likelihood of the param-
eters and give estimates for the missing values. The
naive Bayes generative model allows for the applica-
tion of EM for parameter estimation. In our scenario,
the class labels of the unlabeled data are treated as
the missing values. We use the same implementation
as used in (Nigam et al., 2000).

6. Datasets

To test our approach and compare it with other meth-
ods, we used two data sets that both re
ect real-world
classi�cation problems and are obtained from the Web.

6.1 Hoovers Data set

This corpus of web pages was collected by the WebKB
Group at CMU using the Hoovers Online Web resource
(www.hoovers.com) by crawling 4285 companies on
the web and examining just over 108,000 Web pages.
The set of categories consists of 255 classes and label
each company with the industry sector it belongs to.
Each web-site is classi�ed into one category only for
each classi�cation scheme. The most populous (major-
ity) class contains 2% of the documents. This data set
has previously been used to compare hypertext clas-
si�cation algorithms (Ghani et al., 2001). Since there
is no natural feature split available in this data set,
we randomly divide the vocabulary in two equal parts
and apply Co-Training to the two feature sets. We
have previously (Nigam & Ghani, 2000) shown that
random partitioning can work reasonably well in the
absence of a natural feature split for text classi�cation
problems. Note that this will only be true for data
sets with su�cient redundncy where a random half of
the feature set is su�cient to approximate the learning
task.

6.2 Jobs Data set

We also use a data set obtained fromWhizBang! Labs
consisting of Job Titles and Job Descriptions organized
in a two level hierarchy with 15 �rst level categories
and 65 leaf categories. In all, there are 132,000 exam-
ples and each example consists of a Job Title and a
corresponding Job Description. We consider the Job

title and Job Description as two separate feature sets
for Co-Training.

7. Experimental Results

All the codes used in the following experiments are
BCH codes (31-bit codes for the Jobs data set and 63-
bit codes for the Hoovers Data set) and are the same
as those used in (Ghani, 2000). BCH codes have been
commonly used in coding theory and are known to
have good error-correcting properties.

7.1 Does Combining ECOC and Co-Training

Work?

Table 1 shows the results of the experiments compar-
ing our proposed algorithmwith EM and Co-Training.



Table 1. Classi�cation accuracies for the two data sets. Naive Bayes and ECOC do not use any unlabeled data. All the
other algorithms have access to the same amount of data. We run EM until convergence and the Co-Training iterates

until it runs out of unlabeled data.

Data set Naive Bayes ECOC EM Co-Training ECOC + Co-Training

10% 100% 10% 100% 10% 10% 10%
Labeled Labeled Labeled Labeled Labeled Labeled Labeled

Jobs-65 50.1 68.2 59.3 71.2 58.2 54.1 64.5

Hoovers-255 15.2 32.0 24.8 36.5 9.1 10.2 27.6

The baseline results with Naive Bayes and ECOC us-
ing no unlabeled data are also given, as well as those
when all the labels are known. The latter serve as
an upper bound for the performance of our algorithm.
The results labeled ECOC are using Naive Bayes as
the binary classi�er for each bit of the code.

From results reported in recent papers (Blum &

Mitchell, 1998; Nigam & Ghani, 2000), it is not clear
whether co-training will be able to learn e�ectively by
using unlabeled data on a data set consisting of a large
number of classes. The results in Table 1 show that
Co-Training does not improve the classi�cation accu-

racy by using unlabeled data on the Hoovers-255 data
set; rather it has a negative e�ect and results in per-
formance worse than that of Naive Bayes (which only
uses the labeled examples). EM behaves similarly and
is not able to improve classi�cation accuracy by using
unlabeled data.

On the other hand, our proposed combination of
ECOC and Co-Training does indeed take advantage
of the unlabeled data much better than EM and Co-
Training and outperforms both of those algorithms on
both data sets. It is also worth noting that ECOC
outperforms Naive Bayes for both data sets and this
is more pronounced when the number of labeled ex-
amples is small. This e�ect has also been previously
observed in (Dietterich & Bakiri, 1995; ?)

We �nd that given the same amount of labeled data,
our approach, with 64.5% accuracy, outperforms both
Co-Training (54.1%) and EM (58.2%) on the Jobs-65
data set. This trend is even more pronounced for the
Hoovers-255 where combining ECOC and Co-Training
results in 27.6% accuracy compared to 10.2% and 9.1%
accuracies for Co-Training and EM respectively.

Figure 1 shows the performance of our algorithm in
terms of precision-recall tradeo�. Precision and Recall
are both standard evaluation measures in text classi-
�cation and Information Retrieval literature. As we
can see from the �gure, both Naive Bayes and EM are
not very good at giving high-precision results. This is

not surprising for Naive Bayes as for text classi�cation
problems, Naive Bayes gives very skewed probability
estimates. Since the resulting classi�er after learning
with EM is also a Naive Bayes classi�er, EM also in-
herits this de�ciency and provides poor (and skewed)
probabilities. Interestingly, Naive Bayes used within
ECOC results in high-precision classi�cation at rea-

sonable levels of recall. 2. This result is very encour-
aging and of enormous value in applications which re-
quire high-precision results such as search engines and
hypertext classi�cation systems.

8. Can algorithms other than

Co-Training be used?

The framework to incorporate unlabeled data into
ECOC requires an algorithm that is able to combine la-
beled and unlabeled data for binary classi�cation prob-
lems. We use Co-Training to learn the individual bi-
nary functions as just one example. The next question
that arises is whether Co-Training is especially suited
to this framework or can other algorithms perform as
well? In this section, we use two more algorithms that
learn from labeled and unlabeled data, namelyEM and
Co-EM (which is a hybrid of EM and Co-Training) to
replace Co-Training in the ECOC framework. First,
we give a description of Co-EM, which is a hybrid of
EM and Co-Training.

8.1 Co-EM

Co-EM is a hybrid algorithm, proposed by Nigam &
Ghani (Nigam & Ghani, 2000), combining features
from both co-training and EM. Co-EM is iterative, like
EM , but uses the feature split present in the data, like
Co-Training.Given a feature split with two feature sets
A and B, it trains two classi�ers (one for each feature
set). It proceeds by initializing the A-feature-set naive
Bayes classi�er from the labeled data only. Then, A
probabilistically labels all the unlabeled data. The B-
feature-set classi�er then trains using the labeled data

2More details can be found in (Ghani, 2001)
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Figure 1. Precision Recall Graph for the Jobs-65 Data set

and the unlabeled data with A's labels. B then rela-
bels the data for use by A, and this process iterates
until the classi�ers converge. A and B predictions are
combined together as co-training embedded classi�ers
are. In practice, co-EM converges as quickly as EM
does, and experimentally we run co-EM for 10 itera-
tions. The co-EM algorithm can be thought of as a
closer match to the theoretical argument of (Blum &
Mitchell, 1998) than the co-training algorithm. The
essence of their argument is that an initial A classi-
�er can be used to generate a large sample of noisily-
labeled data to train a B classi�er. The co-EM al-
gorithm does exactly this using one learner to assign
labels to all the unlabeled data, from which the second

classi�er learns. In contrast, the co-training algorithm
learns from only a single example at a time.

Muslea et al. (2001) extend the co-EM algorithm to in-
corporate active learning and show its robust behavior
on a large spectrum of problems because of its ability
to ask for the labels of the most ambiguous examples.

8.2 Results with EM and Co-EM

We repeat the experiments described in section 5, re-
placing Co-Training with EM and Co-EM. The imple-
mentations for these two algorithms are the same as
used in (Nigam & Ghani, 2000). The results for these
experiments are shown in Table 2.

Using either EM or Co-EM instead of Co-Training
with ECOC results in worse performances for both
data sets. This result leads us to ask why Co-Training
is seemingly uniquely suited to work with ECOC? If
ECOC decomposes a multiclass problem into multiple
binary problems, why can't EM and Co-EM be used
to learn these binary classi�cation problems?

This performance can be explained by a closer analysis
of the di�erences in the three algorithms. One possi-
ble explanation for EM's low accuracy is the underly-
ing assumption that the data is generated by a mixture
model and that there is one-to-one correspondence be-
tween mixture components and classes. When EM is
trying to learn the binary classes created by ECOC,

this assumption is severely violated. EM tries to model
each class with one mixture component whereas in re-
ality, each of these "arti�cial" classes is generated by a
large number of classes contained in the original class
space. This severely limits the modeling performance
of EM and results in low classi�cation accuracy.

Co-EM also has the same underlying assumption, but
performs slightly better than EM because it utilizes
the feature split available in the data. In previous
work, we have shown that using the feature split can
be extremely bene�cial and results in improved per-
formance.



Table 2. Classi�cation accuracies for the two data sets comparing Co-Training, EM and Co-EM combined with ECOC.

Data set ECOC Combined with

Co-Training EM Co-EM

Jobs-65 64.5 34.5 58.5

Hoovers-255 27.6 5.5 10.0

9. Discussion and Future Work

We noted while running our experiments that our ap-
proach was very sensitive to the initial documents that
are provided as labeled examples. This leads us to be-
lieve that some form of active learning combined with
this method to pick the initial documents should per-
form better than picking random documents.

As mentioned in Section 4, there is no guarantee that
Co-Training can learn these arbitrary binary functions
where the two classes are created arti�cially. If Co-
Training does not have at least one labeled example
from each of the original classes, it will never be con�-
dent about labeling any unlabeled example from that
class. We ran some experiments using training exam-
ples that did not cover all 'original' classes and as ex-
pected, the results were much worse than the ones re-
ported in the previous section where a certain number
of examples were chosen initially from every "original"
class.

One potential drawback of any approach using Co-
Training type algorithms is the need for redundant and
independent feature sets. In the experiments reported
in this paper, we split our feature sets in a random
fashion (for the Hoovers data set). In previous work
(Nigam & Ghani, 2000), we have shown that random
partitions of the feature set can result in reasonable
performance and some preliminary work has also been
done for developing algorithms that can partition a
standard feature set into two redundantly su�cient
feature sets. This would extend the applicability of
our proposed approach to regular data sets.

Although the combination of ECOC and Co-Training
does indeed improve classi�cation accuracy using un-
labeled data, there is a lot of room for improvement.
In Table 1, the cells for Naive Bayes and ECOC with
100% labeled data give an upper bound on the classi-
�cation accuracy if correct labels for all the unlabeled
data were known. Our approach does not reach this
level of performance and leaves room for improved al-
gorithms based on this approach.

There are several other ways in which ECOC and Co-
Training can be combined, e.g. training two ECOC

classi�ers on the two feature sets separately and com-
bining them using Co-Training. Another approach
to obtain better results would be explicitly trying to
model the classes that are contained in every "binary"
problem created by ECOC. One way would be to re-
quire the co-training algorithm to label and add at
least n examples from each original class at every it-
eration. Another interesting area of work would be
to relax the assumption of one-to-one correspondence
between mixture components and classes (similar to
(Nigam et al., 2000)) in EM and/or Co-EM and then
use them instead of Co-Training.

10. Conclusions

The results described in this paper lead us to believe
that the combination of ECOC and Co-Training algo-
rithms is indeed useful for learning with labeled and
unlabeled data. We have shown that our approach out-
performs both Co-Training and EM algorithms, which
have previously been shown to work well on several
text classi�cation tasks. Our approach not only per-
forms well in terms of accuracy but also provides a
smooth precision-recall tradeo� which is useful in ap-
plications requiring high-precision results. Our results

also show that Co-Training can perform reasonably
well when there is no natural split of the features
present in the data set and a random split is created.
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