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Abstract

In this work we tackle two different problems
of text categorization (TC), namely feature
selection and classifier induction. Feature se-
lection refers to the activity of selecting, from
the set of r distinct features (i.e. words) oc-
curring in the collection, the subset of r′ ¿ r
features that are most useful for compactly
representing the meaning of the documents.
We propose a novel feature selection tech-
nique, based on a simplified variant of the
χ2 statistics. Classifier induction refers in-
stead to the problem of automatically build-
ing a text classifier by learning from a set
of documents pre-classified under the cate-
gories of interest. We propose a novel vari-
ant, based on the exploitation of negative ev-
idence, of the well-known k-NN method. We
report the results of systematic experimenta-
tion of these two methods performed on the
standard Reuters-21578 benchmark.

Keywords: machine learning and information re-
trieval, text categorization, text mining

1 Introduction

Text categorization (TC) denotes the activity of auto-
matically building, by means of machine learning (ML)
techniques, automatic text classifiers, i.e. systems ca-
pable of labelling natural language texts with thematic
categories from a predefined set C = {c1, . . . , cm}. In
general, this is actually achieved by building m inde-
pendent classifiers, each capable of deciding whether a
given document dj should or should not be classified
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under category ci, for i ∈ {1, . . . ,m}1. This process re-
quires the availability of a corpus Co = {d′1, . . . , d′s} of
manually preclassified documents, i.e. documents such
that for all i ∈ {1, . . . ,m} and for all j ∈ {1, . . . , s}
it is known whether d′j ∈ ci or not. A general induc-
tive process (called the learner) automatically builds a
classifier for category ci by learning the characteristics
of ci from a training set Tr = {d′1, . . . , d′g} ⊂ Co of
documents. Once a classifier has been built, its effec-
tiveness (i.e. its capability to take the right categoriza-
tion decisions) may be tested by applying it to the test
set Te = {d′g+1, . . . , d

′
s} = Co − Tr and checking the

degree of correspondence between the decisions of the
automatic classifier and those encoded in the corpus.

Two key steps in the construction of a text classifier
are document indexing and classifier induction.

Document indexing refers to the task of automatically
constructing internal representations of the documents
that (i) be amenable to interpretation by the clas-
sifier induction algorithm (and by the text classifier
itself, once this has been built), and (ii) compactly
capture the meaning of the documents. Usually, a
text document is represented as a vector of weights
dj = 〈w1j , . . . , wrj〉, where r is the number of fea-
tures (i.e. words) that occur at least once in at least
one document of Co, and 0 ≤ wkj ≤ 1 represents,
loosely speaking, how much feature tk contributes to
the semantics of document dj . Many classifier induc-
tion methods are computationally hard, and their com-
putational cost is a function of r. It is thus of key im-
portance to be able to work with vectors shorter than

1In this paper we make the general assumption that a
document dj can in principle belong to zero, one or many
of the categories in C; this assumption is indeed verified
in the Reuters-21578 benchmark we use for our experi-
ments. All the techniques we discuss in this paper can be
straightforwardly adapted to the other case in which each
document belongs to exactly one category.



            

r, which is usually a number in the tens of thousands
or more. For this, feature selection techniques are used
to select, from the original set of r features, a subset
of r′ ¿ r features that are most useful for compactly
representing the meaning of the documents. Often,
feature selection is also beneficial in that it tends to re-
duce overfitting, i.e. the phenomenon by which a clas-
sifier tends to be better at classifying the data it has
been trained on than at classifying other data. In this
work we propose a novel technique for feature selec-
tion based on a simplified variant of the χ2 statistics;
we call this technique simplified χ2. The key issues of
feature selection are introduced in Section 2; in Sec-
tion 2.1 we describe simplified χ2, while the results of
its extensive experimentation on Reuters-21578, the
standard benchmark of automated text categorization
research, are described in Section 4.2.

Classifier induction refers instead to the inductive con-
struction of a text classifier from a training set of
documents that have already undergone indexing and
feature selection. In this work we propose a novel
classifier induction technique based on a variant of
k-NN, a popular instance-based method. After intro-
ducing the ideas that underlie instance-based methods
in Section 3, in Section 3.1 we describe our modified
version of k-NN, based on the exploitation of nega-
tive evidence. The results of its experimentation on
Reuters-21578 are described in Section 4.3.

Section 5 concludes.

2 Issues in feature selection

Given a fixed r′ ¿ r, techniques for feature selection
purport to select, from the original set of r features
that occur at least once in at least one document in
Co, the r′ features that, when used for document in-
dexing, yield the best categorization effectiveness. The
value (1− r′

r ) is called the aggressivity of the selection;
the higher this value, the smaller the set resulting from
feature selection is. A high aggressivity levels brings
about high benefits in terms of computational cost,
and also drastically reduces overfitting. On the other
hand, it may curtail the ability of the classifier to cor-
rectly “understand” the meaning of a document, since
information that in principle may contribute to specify
document meaning is removed. Therefore, deciding on
the best aggressivity usually requires some experimen-
tation.

A widely used approach to feature selection is the so-
called filtering approach [6], which consists in select-
ing the r′ ¿ r features that score highest according

to a function that measures the “importance” of the
feature for the categorization task. Many functions,
mostly from the tradition of information theory, have
been used for this task, some of which are illustrated
in Table 1. In the third column of this table prob-
abilities are interpreted on an event space of docu-
ments (e.g. P (tk, ci) indicates the probability that, for
a random document x, feature tk does not occur in
x and x belongs to category ci), and are estimated
by counting occurrences in the training set. In the
same column, every function f(tk, ci) evaluates the
feature with respect to a specific category ci; in or-
der to assess the value of a feature tk in a “global”,
category-independent sense, either the weighted aver-
age favg(tk) =

∑m
i=1 f(tk, ci) · P (ci) or the maximum

fmax(tk) = maxmi=1 f(tk, ci) of its category-specific val-
ues are usually computed.

2.1 Simplified χ2

In a thorough comparative experiment, performed
across different classifier induction methods and dif-
ferent document corpora, Yang and Pedersen [18] have
shown χ2 to be one of the most effective feature selec-
tion methods, allowing to reduce the dimensionality of
the feature space with aggressivity levels in the range
[.90,.99] with no loss (or even with a small increase) of
effectiveness. This contributes to explain the popular-
ity of χ2 as a feature selection technique in TC [13, 17].

In the experimental sciences χ2 is used to measure
how the results of an observation differ from the re-
sults expected according to an initial hypothesis. In
our application the initial hypothesis is that tk and ci
are independent, and the truth of this hypothesis is
“observed” on the training set. The features tk with
the lowest value for χ2(tk, ci) are thus the most in-
dependent from ci; as we are interested in those fea-
tures which are not, we select those features for which
χ2(tk, ci) is highest.

Ng et al. [11] have recently observed that some aspects
of the mathematical form of the χ2 statistics clash with
the intuitions that underlie feature selection. In par-
ticular, they have observed that the power of 2 at the
numerator (see fourth row of Table 1) has the effect
of equating the role of the probabilities that indicate
a positive correlation between tk and ci (i.e. P (tk, ci)
and P (tk, ci)) with those that indicate a negative cor-
relation (i.e. P (tk, ci) and P (tk, ci)). The correlation
coefficient CC(tk, ci) they propose, being the square
root of χ2(tk, ci), emphasizes thus the former and de-
emphasizes the latter. The experimental results by
Ng et al. [11] show a superiority of CC(tk, ci) over
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Function Denoted by Mathematical form

Document frequency #(tk, ci) P (tk|ci)

Information gain IG(tk, ci) P (tk, ci) · log
P (tk, ci)

P (ci) · P (tk)
+ P (tk, ci) · log

P (tk, ci)

P (ci) · P (tk)

Mutual information MI(tk, ci) log
P (tk, ci)

P (tk) · P (ci)

Chi-square χ2(tk, ci)
g · [P (tk, ci) · P (tk, ci)− P (tk, ci) · P (tk, ci)]

2

P (tk) · P (tk) · P (ci) · P (ci)

Correlation coefficient CC(tk, ci)

√
g · [P (tk, ci) · P (tk, ci)− P (tk, ci) · P (tk, ci)]√

P (tk) · P (tk) · P (ci) · P (ci)

Relevancy score RS(tk, ci) log
P (tk|ci) + d

P (tk|ci) + d

Odds Ratio OR(tk, ci)
P (tk|ci) · (1− P (tk|ci))
(1− P (tk|ci)) · P (tk|ci)

Table 1: Main functions used in the literature for feature selection purposes. In the χ2(tk, ci) and CC(tk, ci)
formulae g is the cardinality of the training set; in the RS(tk, ci) formula d is a constant damping factor.

χ2(tk, ci).

In this work we go a further step in this direction,
by observing that in CC(tk, ci), and a fortiori in
χ2(tk, ci):

• The
√
g factor at the numerator (g being the car-

dinality of the training set) is redundant, since it
is equal for all pairs (tk, ci). This factor can thus
be removed.

• The presence of
√
P (tk) · P (tk) at the denomina-

tor emphasizes extremely rare features, since for
these features this factor has very low values. By
showing that document frequency is a very effec-
tive feature selection technique, Yang and Peder-
sen [18] have clearly shown extremely rare features
to be the least effective in TC. This factor should
thus be removed.

• The presence of
√
P (ci) · P (ci)) at the denomi-

nator emphasizes extremely rare categories, since
for these categories this factor has very low values.
Emphasizing extremely rare categories is counter-
intuitive, since this tends to depress microaver-
aged effectiveness (see Section 4.1), which is now
considered the most correct way to measure effec-
tiveness by a large majority of researchers. This
factor should thus be removed.

Removing these three factors from CC(tk, ci) yields

the simplified χ2 function, which has then the form

sχ2(tk, ci) = P (tk, ci) · P (tk, ci)− P (tk, ci) · P (tk, ci)

In Section 4 we discuss the experiments we have per-
formed with sχ2(tk, ci) on the Reuters-21578 bench-
mark.

3 Issues in instance-based classifier
induction

One of the most popular paradigms for the inductive
construction of a classifier is the instance-based ap-
proach, which is well exemplified by the k-NN (for “k
nearest neighbors”) algorithm used by Yang [15] in the
ExpNet system. For deciding whether dj should be
classified under ci, k-NN selects the k training doc-
uments most similar to dj ; those among them that
belong to ci are seen as carrying evidence towards the
fact that dj also belongs to ci.

Actually, Yang’s is a distance-weighted version of k-
NN (see e.g. [10, Section 8.2.1]), since the fact that
a training document d′z similar to the test document
dj belongs to ci is weighted by the similarity between
d′z and dj . Mathematically, classifying a document by
means of k-NN thus comes down to computing

CSVi(dj) =
∑

d′z∈ Trk(dj)

RSV (dj , d
′
z) · viz (1)
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where

• CSVi(dj) (the categorization status value of doc-
ument dj for category ci) measures the computed
evidence that dj belongs to ci;

• RSV (dj , d
′
z) (the retrieval status value of docu-

ment d′z with respect to document dj) represents
some measure of semantic relatedness between dj
and d′z;

• Trk(dj) is the set of the k training documents d′z
for which RSV (dj , d

′
z) is highest;

• the value of viz is given by

viz =

{
1 if d′z is a positive instance of ci
0 if d′z is a negative instance of ci

The threshold k, indicating how many top-ranked
training documents have to be considered for comput-
ing CSVi(dj), is usually determined experimentally on
a validation set; Yang [15, 16] has found 30 ≤ k ≤ 45
to yield the best effectiveness.

Typically, the construction of a classifier, instance-
based or not, also involves the individuation of a
threshold τi such that CSVi(dj) ≥ τi may be in-
terpreted as an indication to file dj under ci and
CSVi(dj) < τi may be interpreted as an indication
not to file dj under ci. For determining this threshold,
various methods are possible; we have experimentally
compared the two most frequently used ones:

1. proportional thresholding : different τi’s are chosen
for the different ci’s in such a way that if gi% of
training documents are classified under ci, also
gi% of documents from a validation set are;

2. CSV thresholding : a unique value for all the τi’s
is chosen that maximizes effectiveness on a vali-
dation set.

Our experiments have indicated that the former
method is largely superior to the latter in terms of
microaveraged effectiveness, although slightly inferior
in terms of macroaveraged effectiveness (see Table 2)2.
Given that microaveraging is usually taken as the stan-
dard evaluation policy, in all our subsequent experi-
ments we have used proportional thresholding.

2See Section 4.1 for a definition of microaveraged and
macroaveraged effectiveness.

3.1 Using negative evidence in
instance-based classification

The basic philosophy that underlies k-NN and all the
instance-based algorithms used in the TC literature
may be summarized by the following principle:

Principle 1 If a training document d′z similar to the
test document dj is a positive instance of category ci,
then use this fact as evidence towards the fact that dj
belongs to ci. Else, if d′z is a negative instance of ci,
do nothing.

The first part of this principle is no doubt intuitive.
Suppose dj is a news article about Rheinold Messner’s
ascent of Mt. Annapurna, and d′z is a very similar doc-
ument, e.g. a news account of Anatoli Bukreev’s expe-
dition to Mt. Everest. It is quite intuitive that if d′z
is a positive instance of category Climbing, this infor-
mation should carry evidence towards the fact that dj
too is a positive instance of Climbing. But this same
instance shows, in our opinion, that the second part of
this principle is unintuitive, as the information that d′z
is a negative instance of category Fashion should not
be discarded, but should carry evidence towards the
fact that dj too is a negative instance of Fashion.

In this work, we thus propose a variant of the k-NN
approach in which negative evidence (i.e. evidence pro-
vided by negative training instances) is not discarded,
but used in the categorization decision. This may be
viewed as descending from a new principle:

Principle 2 If a training document d′z similar to the
test document dj is a positive instance of category ci,
then use this fact as evidence towards the fact that dj
belongs to ci. Else, if d′z is a negative instance of ci,
then use this fact as evidence towards the fact that dj
does not belong to ci.

Mathematically, this comes down to using

viz =

{
1 if d′z is a positive instance of ci
−1 if d′z is a negative instance of ci

in Equation 1. We call the method deriving from this
modification k-NN1

neg (this actually means k-NNp
neg

for p = 1; the meaning of the p parameter will become
clear later). This method brings instance-based learn-
ing closer to most other classifier induction methods, in
which negative training instances play a fundamental
role in the individuation of a “best” decision surface
(i.e. classifier) that separates positive from negative
instances. Even methods like Rocchio [3, 4], in which
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Microaveraging Macroaveraging
Proportional CSV Proportional CSV
thresholding thresholding thresholding thresholding

k R̂e P̂ r F1 R̂e P̂ r F1 R̂e P̂ r F1 R̂e P̂ r F1

05 .711 .823 .763 .682 .419 .519 .545 .716 .512 .563 .763 .544
10 .718 .830 .770 .676 .418 .517 .557 .721 .524 .563 .763 .543
20 .722 .833 .774 .679 .418 .518 .568 .732 .529 .565 .763 .545
30 .714 .846 .775 .677 .417 .516 .519 .850 .545 .564 .764 .544
40 .722 .834 .774 .677 .418 .517 .563 .718 .521 .564 .769 .546
50 .724 .836 .776 .678 .418 .517 .564 .717 .522 .565 .768 .546
60 .724 .835 .776 .675 .419 .517 .571 .729 .530 .565 .767 .546
70 .722 .833 .774 .676 .279 .395 .569 .734 .537 .572 .758 .546

Table 2: Experimental comparison between proportional thresholding and CSV thresholding for different values
of k on a k-NN system performed with χ2

max feature selection and aggressivity .90.

negative instances had traditionally been either dis-
carded or at best de-emphasized, have recently been
shown to receive a performance boost by an appropri-
ate use of negative instances [12].

4 Experimental results

4.1 Experimental setting

We have conducted a number of experiments to test
the validity of the two methods proposed in Sec-
tions 2.1 and 3.1. For these experiments we have used
the “Reuters-21578, Distribution 1.0” corpus [9], as
it is currently the most widely used benchmark in text
categorization research3. Reuters-21578 consists of
a set of 12,902 news stories, partitioned (according to
the “ModApté” split we have adopted) into a training
set of 9,603 documents and a test set of 3,299 docu-
ments. The documents are labelled by 118 categories;
the average number of categories per document is 1.08,
ranging from a minimum of 0 to a maximum of 16. The
number of positive instances per category ranges from
a minimum of 1 to a maximum of 3964.

We have run our experiments on the set of 115 cat-
egories with at least 1 training instance, rather than
on other subsets of it (see Table 3). The full set of
115 categories is “harder”, since it includes categories
with very few positive instances for which inducing re-
liable classifiers is obviously a haphazard task. This
explains the smaller effectiveness values we have ob-
tained with respect to experiments carried out by other
researchers with exactly the same methods but on re-
duced Reuters-21578 category sets (e.g. the experi-

3The Reuters-21578 corpus may be freely downloaded
for experimentation purposes from
http://www.research.att.com/~lewis/reuters21578.html

# of training # of test # of
documents documents categories

1 ≥ 0 and ≥ 0 135
2 ≥ 1 or ≥ 1 118
3 ≥ 1 and ≥ 0 115
4 ≥ 2 and ≥ 0 95
5 ≥ 1 and ≥ 1 90

Table 3: Category subsets of the Reuters-21578
“ModApté” benchmark and their cardinalities.

ments reported in [5, 7, 17] with standard k-NN).

In all the experiments discussed in this section, stop
words have been removed using the stop list provided
in [8, pages 117–118]. No stemming and number re-
moval have been performed. Term weighting has been
obtained by means of the standard “ltc” variant of the
tfidf function, i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)

where #Tr(tk) denotes the number of documents in
Tr in which tk occurs at least once and

tf(tk, dj) =

{
1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise.

where #(tk, dj) denotes the number of times tk occurs
in dj . Weights have been further normalized by cosine
normalization, i.e.

wkj =
tfidf(tk, dj)√∑r′

s=1 tfidf(ts, dj)2

where r′ is the set of terms resulting from feature se-
lection (feature selection, when performed, obviously

5



          

takes place before weighting). For the RSV (dj , d
′
z)

function used in k-NN, k-NNp
neg and Rocchio (see Sec-

tion 4.2) we have used the inner product

RSV (dj , d
′
z)

def
=

r′∑

k=1

wkj · wkz

which for our cosine-normalized vectors also corre-
sponds to cosine similarity.

Classification effectiveness has been measured in terms
of the classic IR notions of precision (Pr) and recall
(Re) adapted to the case of document categorization.
Precision wrt ci (Pri) is defined as the probability that
if a random document dx is categorized under ci, this
decision is correct (i.e. it is a true positive for ci). In
what follows, TP , TN , FP and FN will denote the
numbers of true positives, true negatives, false posi-
tives, and false negatives, respectively. Recall wrt ci
(Rei) is instead defined as the probability that, if a
random document dx ought to be categorized under
ci, this decision is taken. Estimates of Pri and Rei
(indicated by P̂ ri and R̂ei) may be obtained in the
obvious way by counting occurrences on the test set.
These category-relative values may in turn be averaged
to obtain P̂ r and R̂e, i.e. values global to the whole
category set C, according to two alternative methods:

• microaveraging : P̂ r and R̂e are obtained by glob-
ally summing over all individual decisions, i.e.:

P̂ r
µ

=
TP

TP + FP
=

∑m
i=1 TPi∑m

i=1(TPi + FPi)

R̂e
µ

=
TP

TP + FN
=

∑m
i=1 TPi∑m

i=1(TPi + FNi)

where the “µ” superscript stands for microaver-
aging.

• macroaveraging : precision and recall are first eval-
uated “locally” for each category, and then “glob-
ally” by averaging over the results of the different
categories, i.e.:

P̂ r
M

=

m∑

i=1

Pri

m
=

m∑

i=1

TPi
TPi + FPi

m

R̂e
M

=

m∑

i=1

Rei

m
=

m∑

i=1

TPi
TPi + FNi

m

where the “M” superscript stands for macroaver-
aging.

In some experiments (e.g. the one reported in Table 2)
we have evaluated both microaveraged and macroav-
eraged precision and recall, but in most others we
have just worked with microaveraging, since (as pre-
viously remarked) it is almost universally preferred to
macroaveraging.

As a measure of effectiveness that combines the con-
tributions of both P̂ r and R̂e, we have used the well-
known Fβ function, defined as

Fβ =
(β2 + 1) · P̂ r · R̂e
β2 · P̂ r + R̂e

with 0 ≤ β ≤ +∞. Similarly to most other researchers
we have used the parameter value β = 1, which places
equal emphasis on P̂ r and R̂e.

4.2 Feature selection experiments

We have performed our feature selection experiments
first with the standard k-NN classifier of Section 3
(with k = 30), and subsequently with a Rocchio classi-
fier we have implemented following [3, 4] (the Rocchio
parameters were set to β = 16 and γ = 4; see [3, 4, 12]
for a full discussion of the Rocchio method). In these
experiments we have compared two baseline feature
selection functions, i.e.

#avg(tk) =

m∑

i=1

#(tk, ci) · P (ci)

χ2
max(tk) =

m
max
i=1

χ2(tk, ci)

to two variants of our sχ2(tk) function, i.e.

sχ2
max(tk) =

m
max
i=1

sχ2(tk, ci)

sχ2
avg(tk) =

m∑

i=1

sχ2(tk, ci) · P (ci)

As a baseline, we have chosen χ2
max(tk) and not

χ2
avg(tk) because the former is known from litera-

ture [18] to perform substantially better than the lat-
ter. Table 4 lists the microaveraged F1 values for k-NN
and Rocchio with different feature selection techniques
at different aggressivity levels. A few conclusions may
be drawn from these results:

• on the k-NN tests we performed first, sχ2
avg(tk)

proved largely inferior to sχ2
max(tk) (and to all

other feature selection functions tested). This
6



           

Reduction k-NN Rocchio
level #(tk) χ2

max(tk) sχ2
max(tk) sχ2

avg(tk) #(tk) χ2
max(tk) sχ2

max(tk) sχ2
avg(tk)

99.9 — — — — .458 .391 .494 —
99.5 — — — — .624 .479 .657 —
99.0 .671 .648 .697 .501 .656 .652 .692 —
98.0 .703 .720 .734 .554 .691 .710 .736 —
96.0 .721 .766 .729 .577 .737 .733 .748 —
94.0 .731 .766 .728 .596 — — — —
92.0 .729 .772 .732 .607 — — — —
90.0 .734 .775 .732 .620 — — — —
85.0 .735 .767 .726 .640 — — — —
80.0 .734 .757 .730 .658 — — — —
70.0 .734 .748 .730 .682 — — — —
60.0 .732 .741 .733 .691 — — — —
50.0 .733 .735 .734 .701 — — — —
40.0 .733 .735 .731 .716 — — — —
30.0 .731 .732 .730 .721 — — — —
20.0 .731 .732 .730 .727 — — — —
10.0 .730 .730 .730 .730 — — — —
00.0 .730 .730 .730 .730 — — — —

Table 4: Microaveraged F1 values for k-NN (k = 30) and Rocchio (α = 16 and β = 4) with different feature
selection techniques at different aggressivity levels.

is reminiscent of Yang and Pedersen’s [18] re-
sult, who showed that χ2

avg(tk) is outperformed
by χ2

max(tk). As a consequence, due to time con-
straints we have abandoned sχ2

avg(tk) without fur-
ther testing it on Rocchio;

• on the k-NN tests, sχ2
max(tk) is definitely inferior

to χ2
max(tk) and comparable to #avg(tk) up to lev-

els of reduction around .95, but becomes largely
superior for aggressivity levels higher than that;

• following this observation, we have run Rocchio
tests with extreme (from .960 up to .999) aggres-
sivity levels, and observed that in these condi-
tions sχ2

max(tk) outperforms both χ2
max(tk) and

#avg(tk) by a wide margin.

The conclusion we may draw from these experiments
is that sχ2

max(tk) is a superior alternative to both
χ2
max(tk) and #avg(tk) when extremely aggressive fea-

ture selection is necessary. Besides, it is important
to remark that sχ2

max(tk) is much easier to compute
than χ2

max(tk). Altogether, these facts indicate that
sχ2

max(tk) may be a very good choice in the context
of learning algorithms that do not scale well to high
dimensionalities of the feature space, such as neural
networks, or in the application to TC tasks character-
ized by extremely high dimensionalities.

4.3 Classifier induction experiments

We have performed our classifier induction experi-
ments by comparing a standard k-NN algorithm with
our modified k-NN1

neg method, at different values of k.
For feature selection we have chosen to use χ2

max(tk)
with .90 aggressivity since this had yielded the highest
effectiveness (F1 = .775) in the experiments of Sec-
tion 4.2. The results of this experimentation are re-
ported in the first and second columns of Table 5.

A few conclusions may be drawn from these results:

1. Bringing to bear negative evidence in the learning
process has not brought about the performance
improvement we had expected. In fact, the high-
est performance obtained for k-NN1

neg (.775) is
practically the same as that obtained for k-NN
(.776).

2. The performance of k-NN1
neg peaks at substan-

tially lower values of k than for k-NN (10 vs. 50),
i.e. much fewer training documents similar to the
test document need to be examined for k-NN1

neg

than for k-NN.

3. k-NN1
neg is a little less robust than k-NN with re-

spect to the choice of k. In fact, for k-NN1
neg effec-

tiveness degrades somehow for values of k higher
than 10, while for k-NN it is hardly influenced by
the value of k.
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k-NN k-NN1
neg k-NN2

neg k-NN3
neg

k R̂e P̂ r F1 R̂e P̂ r F1 R̂e P̂ r F1 R̂e P̂ r F1

05 .711 .823 .763 .667 .821 .737 .709 .825 .764 .711 .823 .764
10 .718 .830 .770 .671 .918 .775 .720 .837 .774 .722 .834 .774
20 .722 .833 .774 .663 .930 .774 .725 .841 .780 .725 .836 .778
30 .714 .846 .775 .647 .931 .763 .722 .861 .787 .721 .854 .782
40 .722 .834 .774 .638 .934 .765 .731 .854 .786 .730 .841 .781
50 .724 .836 .776 .628 .938 .752 .730 .854 .786 .730 .843 .782
60 .724 .835 .776 .617 .940 .745 .730 .850 .785 .730 .842 .782
70 .722 .833 .774 .611 .945 .742 .731 .851 .786 .730 .842 .782

Table 5: Experimental comparison between k-NN and k-NNp
neg for different values of k and p, performed with

χ2
max feature selection and aggressivity .90, and evaluated by microaveraging.

Observation 1 seems to suggest that negative evidence
is not detrimental to the learning process, while Ob-
servation 2 indicates that, under certain conditions, it
may actually be valuable. Instead, we interpret Obser-
vation 3 as indicating that negative evidence brought
by training documents that are little similar to the test
document may be detrimental.

This is indeed intuitive. Suppose dj is our news ar-
ticle about Rheinold Messner’s ascent of Mt. Anna-
purna, and d′z is a critical review of a Picasso exhi-
bition. Should the information that d′z is a negative
instance of category ci carry any evidence at all to-
wards the fact that dj too is a negative instance of
ci? Hardly so, given the wide semantic distance that
separates the two texts. While very dissimilar docu-
ments have not much influence in k-NN, since positive
instances are usually far less than negative ones, they
do in k-NN1

neg, since each of the k most similar doc-
uments, however semantically distant, brings a little
weight to the final sum of which the CSV consists.

A similar observation lies at the heart of the use of
“query zoning” techniques in the context of Rocchio
classifiers [14, 12]; here, the idea is that in learning
a concept, the most interesting negative instances of
this concept are “the least negative ones” (i.e. the neg-
ative instances most similar to the positive ones), in
that they are more difficult to separate from the posi-
tive instances. Similarly, support vector machine clas-
sifiers [2, 5] are induced by using just the negative
instances closest to the decision surfaces (i.e. the so-
called negative support vectors), while completely for-
getting about the others.

A possible way to exploit this observation is switching
to CSV functions that downplay the influence of the
similarity value in the case of widely dissimilar docu-

ments; a possible class of such functions is

CSVi(dj) =
∑

d′z∈ Trk(dj)

RSV (dj , d
′
z)
p · viz (2)

in which the larger the value of the p parameter is,
the more the influence of the similarity value is down-
played in the case of widely dissimilar documents. We
call this method k-NNp

neg.

We have run an initial experiment, whose results are
reported in the third and fourth column of Table 5
and which has confirmed the value of this intuition: k-
NN2

neg systematically outperforms not only k-NN1
neg

but also standard k-NN.The k-NN2
neg method peaks

for a higher value of k than k-NN1
neg and is remark-

ably more stable for higher values of k. This seemingly
suggests that negative evidence provided by very dis-
similar documents is indeed useful, provided its im-
portance is de-emphasized. Instead, k-NN3

neg slightly
underperforms k-NN2

neg, showing that the level of de-
emphatization must be chosen carefully.

Before the conference we plan to carry out further ex-
periments (that we have not had the time to carry out
before paper submission) on the role of negative evi-
dence in instance-based learning. Basically, these will
consist in

• experimenting Equation 2 with different (also
noninteger) values of p in order to determine the
optimal setting;

• experimenting with negative evidence within
other instance-based approaches. In particular,
we are interested in plugging negative evidence
into the formula

CSVi(dj) = 1−
∏

d′z∈ Trk(dj)

(1−RSV (dj , d
′
z))

viz
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used by Cohen and Hirsh [1] in the context of their
Whirl system. This may be done by using the
same values for viz as used in k-NNp

neg in place of
the ones used in [1], which correspond to the ones
used in standard k-NN.

• experimenting Equation 2 also with the values for
viz used in standard k-NN, in order to check if
de-emphasizing the importance of widely dissimi-
lar documents may also improve the performance
of instance-based learning with positive evidence
only.

5 Conclusion and further research

In this paper we have discussed two novel techniques
for text categorization: sχ2, a feature selection tech-
nique based on a simplified version of the χ2 statistics,
and k-NNp

neg, a classifier learning method consisting
of a variant, based on the exploitation of negative ev-
idence, of the popular k-NN instance-based method.

Concerning the former method, experiments per-
formed on the standard Reuters-21578 benchmark
have confirmed out hypothesis that simplified χ2 could
be an interesting alternative to previously known fea-
ture selection techniques. In fact, simplified χ2 has
systematically outperformed χ2, one of the most pop-
ular feature selection techniques, at extremely aggres-
sive levels of reduction, and has done so by a wide
margin. This fact, together with its low computa-
tional cost, make simplified χ2 an extremely attractive
method in those applications which demand radical re-
ductions in the dimensionality of the feature space.

Concerning k-NNp
neg, our hypothesis that evidence

contributed by negative instances could provide an ef-
fectiveness boost for the categorization task has been
only partially confirmed by the experiments. In fact,
our k-NN1

neg method has performed as well as the orig-
inal k-NN but no better than it, and has furthermore
shown to be more sensitive to the choice of k than the
standard version. However, we have shown that by
appropriately de-emphasizing the importance of very
dissimilar training instances this method consistently
outperforms standard k-NN. Given the prominent role
played by k-NN in the text categorization literature,
and given the simple modification that moving from k-
NN to k-NNp

neg requires, we think this is an interesting
result.
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