
1

Experiments on Automatic Web Page Categorization for IR system

Hisao Mase
Department of Computer Science, Stanford University

Gates RM418, Stanford, CA 94305, U.S.A.
mase@db.stanford.edu

Abstract
This paper describes keyword-based Web page categorization. Our goal is to embed our categorization technique

into information retrieval (IR) systems to facilitate the end-users’ search task. In such systems, search results must be
categorized faster, while keeping accuracy high. Our categorization system uses a knowledge base (KB) to assign
categories to Web pages. The KB contains a set of characteristic keywords with weights by category, and is
automatically generated from training texts. With the keyword-based approach, the algorithms to extract keywords
and assign weights to them should be considered, because the algorithms affect strongly both categorization accuracy
and processing speed. Furthermore, we must take two characteristics of Web pages into account: (1) the text length is
very variable, which makes it harder to use statistics such as word frequency to calculate keyword weights, and (2) a
huge number of distinct words are used, which makes the KB bigger and therefore processing speed lower. We
propose five kinds of methods to normalize word frequency distribution for higher categorization accuracy, and three
kinds of methods to filter out non-important words from the KB for faster processing. We performed experiments to
compare these methods from viewpoints of both accuracy and KB size. We used 15 categories, 10,311 Web pages for
KB generation and 939 pages for testing. The results show that the KBs with various accuracy values and sizes could
be generated by applying our methods and that it is possible for end-users to select the most appropriate KB
according to their preferences in accuracy and speed.

1. Introduction
It is now possible to obtain all kinds of information

via the Internet. Many types of search engines are
available to do the search. As accessible information
increases, however, it has become more and more
difficult to obtain the information rapidly and easily.
One solution to this problem is to categorize the
documents according to their topics beforehand or in
real time. Some search engines such as Yahoo! (Yahoo!
1995) adopt category-based search. However, it is a
time-consuming task for us to categorize a huge number
of pages correctly, because we must read and analyze
each of them.

Many researchers have been working on automatic
categorization for special types of documents, such as
newspaper articles (Hayes 1990) and patent documents
(Mase 1996). Infoseek adopts neural network technology
to categorize millions of Web pages automatically
(Infoseek 1996). Some categorization systems use pre-
defined categories (Mase 1996), and others use
dynamically generated clusters (Sahami 1998, Iwayama
1995).

In information retrieval (IR) systems such as
Infoseek and Yahoo!, category hierarchies do not always
fit end-users’ search purposes. If search results could be
categorized in real time according to end-users’ own
categories, the category information would be more
useful to facilitate their search task. In order to apply
real time categorization technique to IR systems,
however, categorization algorithms for high accuracy

and reasonable processing speed would be required.
We have used a categorization knowledge base (KB)

to assign categories automatically to query texts [Mase
1996]. The KB contains a set of characteristic keywords
with weights by category and is automatically generated
from training texts by using word frequency. With the
keyword-based approach, however, the algorithms to
extract keywords and assign weights to them should be
considered, because the algorithms affect strongly both
accuracy and processing speed.

Furthermore, since we focus on Web pages as target
texts, we must take the following two characteristics of
Web pages into account:
(1) Text length is very variable.

Some pages include short texts and some include
extremely long texts. This makes it harder to use word
frequency to calculate keyword weights, because the
word frequency depends strongly on text length and the
training pages with long texts might dominate the KB.
(2) A huge number of distinct words are used.

Since there is no restriction on word usage, too many
kinds of words are used, including proper noun words
and misspelled words. Since the KB contains all the
keywords in training texts, the KB size will be bigger if
the mechanism to distinguish important keywords from
non-important words does not exist. The bigger KB
causes a lower processing speed in keyword matching.

In this paper, we propose five methods to calculate
keyword weights based on word frequency, especially to
normalize keyword frequency (weights) distribution for

2

higher accuracy (these solve the problem described
above in (1)). We also propose three kinds of methods to
filter out non-important words from the KB for faster
processing (these solve the problem described in (2)).
We performed experiments to compare our methods
from viewpoints of both accuracy and KB size. In these
experiments, we used 15 categories, 10,311 Web pages
for KB generation and 939 pages for testing.

Section 2 describes the overview of our
categorization system. Section 3 describes our methods
of normalization and word filtering. In Section 4 we
compare these methods through experiments.

2. Overview of our Categorization System
2.1 Premises of our System

Our system has the following restrictions on
categorization:
(1) Categories must be pre-defined.

Unique category names must be described
beforehand in a particular text file by end-users or
system administrators.
(2) The category domains should be mutually exclusive.

This means that two categories share few domains. If
the domain of category-A is a subset of that of category-
B, then it is difficult to categorize documents into
category-A by keyword-based approaches.
(3) Training texts must be prepared for KB generation.

A training text set must be prepared, because our
system extracts keywords on each category from them.
Each training text must have one or more appropriate
categories. Although it might be time-consuming to
collect training data from end-users, it is much more
difficult for them to define enough kinds of keywords for
each category by hand.
(4) There must be enough keywords in a text.

If there is no text or few words in a query text, it is
impossible for our system to categorize it.

2.2 Processing Flow of our System
Figure 1 shows the processing flow of our Web page

categorization system. It consists of two phases: KB
generation phase and categorization phase.

2.2.1 KB Generation
KB generation is executed in batch mode. It is

performed by the following modules, some of which are

Fetch HTML texts

Remove HTML tags

Word extraction
Text truncation / Tokenization / Word stemming /
Stopword deletion / Low frequency word deletion

Query URLs URLs with categories

Merging words
by categories

Normalization of word frequency
distribution in each text

Normalization of keyword weight
distribution on each category

Filter out non-important words

KB

Keywords

Similarity calculation for each category

Decision of proper categories

Bundle URLs with same category

Categorized URLs

Stopwords
- General
- for Web
- Common

 [URL] [Category]
 URL1 SPRT
 URL2 BSNS
 URL3 LIFE

[keword] [category] [weight]
Baseball SPRT 0.7
Baseball LIFE 0.2
Baseball BSNS 0.1
Stock BSNS 0.8
Stock LIFE 0.2

Figure 1: Processing flow of the system.

Internet

KB Generation
phase

Categorization
phase

Methods are discussed in this paper.

3

shared with the categorization phase:
[1] Preprocessing

Our system gets a URL list with categories as input.
First, our system fetches HTML texts and removes
HTML tags in them as preprocessing. The system calls a
utility of the programming language Python (Python
1998) to fetch HTML texts. We set a time-out function
in the fetching process for faster processing. That is, if
the fetching program cannot connect a target Web server
within predefined time, the system terminates the
fetching of this HTML text. Currently, fetching
processing is executed sequentially.

The HTML tag deletion algorithm is simple. It
removes the character strings surrounded by “<“ and “>”
by checking each character in the text.
[2] Word extraction

This module consists of five sub-modules: text
truncation, tokenization, word stemming, stopword
deletion and low frequency word deletion. These
processes other than tokenization are optional.

For the purpose of fast processing, text truncation
extracts the first N characters from the text and removes
the rest of the text. N is a tunable parameter.

Tokenization extracts words from the text. Our
system does not use word dictionaries, because it takes
more time to access them. In order to exclude as many
noise words as possible, only the words that meet all of
the following conditions are extracted as keyword
candidates:
- It begins with a letter a-z or A-Z.
- It consists of letters, digits, hyphens and underscores.
- The length is less than 20.
All capitalized letters are translated into lower case.

Word stemming translates the extracted words to
their stems so that the word frequency is counted more
correctly. We adopt a free stemming program (Porter
1980). By stemming words, for example, the words
“study”, “studies”, and “studied” are regarded as the
stemmed word “studi”.

Stopword deletion removes predefined non-
important words from the word set. We define three
kinds of stopword lists: “general stopwords”, “stopword
for Web pages” and “common words”. General
stopwords are independent of the domains or formats of
the target texts, including “the”, “of”, “is”, etc. We
prepared 446 general stopwords by hand from a word
dictionary. Stopwords for Web pages include the words
appearing in most Web pages, such as “home” and
“html”. We defined 35 stopwords for Web pages by
hand. Common words are the words appearing over
many categories. Whether one word is a common word
or not is strongly dependent on the domains and
category definition. Our system extracted 330 common
words from the training texts in the experiments
described in section 4.

Low frequency word deletion cuts off words with
relatively low frequency of occurrence in a text for faster
processing. The details for this algorithm are described
in Section 3.2.
[3] Normalization of word frequency distribution on
each text

As described in Section 1, the text length of a Web
page is quite variable. As a result, the pages with longer
texts include more kinds of words with higher
frequencies, as shown in [step 1] of Figure 2. In other
words, the pages with longer texts dominate the KB. In
order to solve this problem, we should consider the
normalization of the word frequency distribution on each
text so that we can treat the texts with different lengths
equally, as shown in [step 2] of Figure 2. We propose
five kinds of methods to normalize word frequency in
each page in Section 3.1.
[4] Merging words by category

All training texts are given their corresponding
categories. All words appearing in the texts with the
same category are merged. Then the weights of the same
word are summed up as shown in [step 3] of Figure 2.
[5] Normalization of keyword weight distribution on
each category

The number of training texts for each category might
be different. If a word appears in more texts with a
particular category, the weight of the word is higher. We
should normalize distribution of keyword weights on
each category, as shown in [step 4] of Figure 2. We
propose five kinds of methods in Section 3.1.
[6] Filtering out non-important words

This module cuts off non-important words in the KB
as noise words. We propose three kinds of word filters,
plus their combinations, in Section 3.1. The filters use
the weight distribution of a keyword to decide whether a
word should be removed or not. Reducing the KB size
not only makes the word matching process faster but
also facilitates KB maintenance by end-users or system
administrators. Notice that word removal in this module
is different from that in the word extraction module: the
former cuts off words in the KB, while the latter cuts off
words from a set of words extracted from a text.
[7] KB structure

The KB is a set of keywords with their weights by
category. Each record in the KB consists of category
name, keyword string and its weight in that category, as
shown in Figure 1.

2.2.2 Categorization of New Pages
In the categorization phase, our system gets a set of

URLs without categories as input from an IR system that
requires the organization of search results, such as
Sensemaker (Baldonado 1997).
[1] Preprocessing and word extraction

Our system uses the same modules as those used in
the KB generation phase (see Section 2.2.1).

4

[2] Similarity calculation for each category
We use the following “dot product” formula to

calculate similarity to each category:
S(i)= Σs(i, j) (j=1,2,…,n)
s(i, j)=W(j)*(w(i, j)/Σw(k,j)) (k=1,2,…,m)

where S(i) is a similarity value of category-i, s(i,j) is a
similarity of category-i on a particular keyword-j in a
query text, n is a number of distinct keywords extracted
from a query text, W(j) is a weight of keyword-j in a
query text, w(i,j) is a keyword weight of keyword-j on
category-i in the KB, and m is a number of categories.
This formula has the following characteristics:
- The higher the weight of a keyword-j extracted from a
query text (W(j)) is, the higher the similarity value on
that keyword (s(i,j)) is.
- The higher the relative weight of a keyword-j in a
category-i (w(i, j)/Σw(k,j)) is, the higher the similarity
value on that keyword on that category (s(i,j)) is.
- When a keyword-j appears over more categories, the
similarity value of that keyword on that category (s(i,j))
is lower, because the value Σw(k,j) is higher.
[3] Decision of proper categories

The calculated similarity values are sorted and the
top N categories are assigned to the URL. It is difficult
to decide the value of N automatically. We will discuss
multiple category assignment in Section 4.5.2. In the
experiments in Section 4, N is equal to 1.
[4] Bundle URLs with the same category

URLs with the same category are bundled together.
The bundle is a set of URLs with the same category. One
bundle corresponds exactly to one category. The URLs

with multiple categories may belong to multiple bundles.
Finally, our system outputs these bundles.

3. Methods for higher accuracy and faster
processing

As described in Section 1, keyword extraction and
weight assignment procedures affect strongly both
accuracy and processing speed. In this section we
propose methods for higher accuracy and faster
processing.

3.1 KB Generation Phase
Since the KB is generated in batch mode, processing

time is not a major concern. Thus, we propose methods
on the following three kinds of processing only for
higher accuracy:
[1] How to normalize word frequency distribution in
each text

Our system is now given a set of pairs of a keyword
and its frequency. The goal of this normalization is to
assign a keyword weight which is independent of the
length of the HTML text in which the keyword appears.
We propose the following five normalization methods.
[Method-1] Square root operator

This method is simple. The square root operator is
applied to each value of word frequency as shown in
Figure 3[1]. It reduces the difference of the word
frequency.
[Method-2] Linear mapping

Method-2, 3 and 4 focus on the maximum value
(VMAX) and the minimum value (VMIN) of word

TEXT3
TEXT1

Training texts for Category-B

TEXT6

Training texts for Category-A
[step 1]
Word Extraction

[step 2]
Normalization of
word frequency

TEXT2

KB

Figure 2: Mechanism of normalization for KB generation.

Note: one rectangle shows one word and the length shows word frequency (weight).

TEXT4 TEXT5 TEXT7 TEXT8

[step 3]
Merging words
by category

[step 4]
Normalization of
keyword weights

5

frequency in a text. All values are mapped into a fixed
scale of 1 to 100. VMAX is mapped into 100, and
VMIN to 1. The difference among these three methods is
how to map values other than VMAX and VMIN. In
Method-2, the value is mapped linearly as shown in
Figure 3[2]. That is, the value X is mapped into Y, using
the following formula which shows graph-A in Figure 3:

Y=1+(100-1)*(X-VMIN)/(VMAX-VMIN)
[Method-3] Mapping using quadratic function

In this method, the value is mapped according to a
quadratic function as shown in Figure 3[3]. The value X
is mapped into Y, using the following formula
corresponding to graph-B in Figure 3:

Y=1+(100-1)*(X-VMIN)2/(VMAX-VMIN)2

Notice that the normalized value by this formula is
lower than the one by Method-2.
[Method-4] Mapping using square root function

In this method, the value is mapped based on square
root function as shown in Figure 3[4]. The value X is
mapped into Y, using the following formula,
corresponding to graph-C in Figure 3:

 Y=1+(100-1)*sqrt(X-VMIN)/sqrt(VMAX-VMIN)
Notice that the normalized value by this formula is

higher than the one by Method-2 or 3.
[Method-5] Relative values to total number of words

In this method, the total number of words in a text is
calculated. Then, the normalized value is calculated by
dividing the original word frequency value by the total

number, as shown in Figure 3[5]. Notice that if the total
number of words is small, the normalized value is high
even though its frequency is low.
[2] How to normalize keyword weight distribution on
each category

Our system is now given a set of pairs of keyword
and its “normalized” frequency. Since all words in the
texts with the same category are merged and the
normalized frequency values of the same words are
summed up (see [step 3] of Figure 2), the keyword
weight on a category with more training texts than other
categories is higher. The goal of this normalization is to
assign a keyword weight which is independent of the
number of the training texts. We adopt the same five
methods as those mentioned above [1].
[3] How to filter out non-important words

Our system is now given a set of triples of category-i,
keyword-j and its normalized weight (w(i,j)) as the KB.
However, this KB includes many non-important words
to be removed, which makes the KB bigger and
therefore the processing speed lower. Thus we propose
the following three kinds of filters for KB size reduction:
[Filter-1] Maximum value of weights

This filter focuses on the maximum value of the
normalized weights in each keyword. The words with
low weight should be removed from the KB, because our
system cannot obtain enough statistic data on those
words to decide whether they are important keywords or

KW1 10
KW2 9
KW3 8
KW4 7
KW5 5
KW6 4
KW7 3
KW8 2
KW9 1
KW10 1

VMAX=10
VMIN=1
Total # of words=50

Original word set [1] Square root [2] Linear mapping [3] Mapping using [4] Mapping using [5] Relative value
 quadratic function square root function

 0 VMIN VMAX
 Weight before normalization (X)

100

1

Weight after
normalization

(Y)

KW1 3.16
KW2 3.00
KW3 2.83
KW4 2.65
KW5 2.24
KW6 2.00
KW7 1.73
KW8 1.41
KW9 1.00
KW10 1.00

KW1 100
KW2 89.0
KW3 78.0
KW4 67.0
KW5 45.0
KW6 34.0
KW7 23.0
KW8 12.0
KW9 1.00
KW10 1.00

KW1 100
KW2 79.2
KW3 60.9
KW4 45.0
KW5 20.6
KW6 12.0
KW7 5.89
KW8 2.22
KW9 1.00
KW10 1.00

KW1 100
KW2 94.3
KW3 88.3
KW4 81.8
KW5 67.0
KW6 58.2
KW7 47.7
KW8 34.0
KW9 1.00
KW10 1.00

KW1 0.20
KW2 0.18
KW3 0.16
KW4 0.14
KW5 0.10
KW6 0.08
KW7 0.06
KW8 0.04
KW9 0.02
KW10 0.02

Figure 3: Five methods for Normalization of distribution of word frequency.

Graph-B

Graph-A

Graph-C

6

not. With this filter, the word with lower maximum
values over normalized weights by category in the word
than a threshold (tunable) is removed from the KB as
shown in Figure 4.
[Filter-2] Relative value of weights

This filter focuses on the relative value of the
weights on a keyword, which is similar to Method-5
mentioned above [1]. First, the total of the weights for a
keyword is calculated. Then each weight is normalized
by dividing the weight by the total. The word with lower
maximum value over the relative weights for the word
than a threshold (tunable) is removed from the KB. This
filter is useful to remove keywords with equal weights
by category or those appearing over many categories.
[Filter-3] Distribution of weights on a keyword

This filter focuses on the “variance” of the
distribution of the weights on a keyword. The important
keywords for categorization should have significantly
higher weights for the category they identify. Thus, the
variance of the distribution of the weights is also higher.
However, the variance value is higher if the average
value of the weights is higher. Thus, we calculate a
“normalized” variance by dividing the original variance
by the average value of the weights. That is, it is
calculated by the following formula:

nvar = var/m
var = Σ((w(k,j)-m)*(w(k,j)-m))/n (k=1,…,n)
m = Σw(k,j)/n (k=1,…,n)

where, nvar is “normalized” variance, var is variance, m
is the average value of keyword weights and n is the
number of category. This filter removes the words whose
“normalized” variance is lower than a threshold
(tunable), as shown in Figure 4.

In these three filters, since we use thresholds to
decide non-important words, our system is able to
generate KBs with various sizes and accuracy values by
tuning these thresholds. The best combination of them
depends on texts, category definition and end-users’
preferences.

3.2 Categorization Phase

Since faster processing is required in the
categorization phase, it is important to develop good
techniques for it. In addition to the idea we have
discussed, we have the following:
[1] How to truncate the query text

Since the text length of Web pages varies widely, it
takes much time if an extremely long page is included in
a search result. In order to improve the speed for such a
page, text truncation is most useful, because it takes little
time to truncate the text. Thus, our system only considers
the first N characters of the text. Text truncation also
reduces the number of distinct keywords, which
facilitates faster processing.
[2] How to reduce the words extracted from the query
text

The words with lower frequency in a query do not
significantly impact the category decision. Thus,
removing such keywords improves processing speed,
because the time to match with the KB is reduced. Our
method focuses on the frequency of occurrence of each
word and the total number of distinct words in a query.
That is, we remove words with frequencies lower than
the following value F:

F=[Total number of distinct words]/M
where M is tunable parameter. If M is set lower (the
threshold F is higher), the number of extracted words is
lower and the processing speed is higher.

4. Experiments
We performed experiments to compare the methods

described in Section 3.

4.1 Data Collection
[1] Category definition

We used Infoseek categories (the 15 categories
shown in Figure 5, together with their corresponding 240
subcategories) called “Channel” (Infoseek 1995).
[2] HTML text data
(a) Training texts

We collected a maximum of 100 URLs from each of
the 240 Infoseek subcategory pages as training text data.

Note1: The length of one rectangle shows a weight of one category.

Filter-1
(Maximum weight value)

Filter-2
(Relative weight)

Filter-3
(Weight distribution)

Figure 4: Distribution patterns of weights of the word which each filter cuts off.

7

Figure 5: Infoseek 15 categories (as of January, 1998).
 Automotive (AUTO) Business (BSNS) Computer (COMP) Careers (CRER) Entertainment (ENTR)
 Personal Finance (FINC) Health (HLTH) Internet (INTR) Kids & Family (KIDS) Good-Life (LIFE)
 News (NEWS) Real Estate (REAL) Shopping (SHOP) Sports (SPRT) Travel (TRVL)
Note: The string in parenthesis is abbreviation of the category used in other figures.

Figure 6: Number of training texts and test texts.
Category Number of

training texts
Number of
test texts

Category Number of
training texts

Number of
test texts

Category Number of
training texts

Number of
test texts

AUTO 551 24 FINC 695 75 NEWS 568 38
BSNS 1079 70 HLTH 991 90 REAL 196 0
COMP 963 89 INTR 814 62 SHOP 754 66
CRER 426 39 KIDS 508 18 SPRT 1463 176
ENTR 1128 82 LIFE 884 53 TRVL 559 57

Figure 7: List of experiments.
KB generation methods Word extraction

from test texts
Stemming Stopword

deletion
Word

frequency
normalization

Keyword
weight

normalization

Word filters Text
truncation

Low frequent
word deletion

1 N/A N/A N/A N/A N/A N/A N/A
2 Applied N/A N/A N/A N/A N/A N/A
3 Applied Applied N/A N/A N/A N/A N/A

4-1 Applied Applied Method-1 N/A N/A N/A N/A
4-2 Applied Applied Method-2 N/A N/A N/A N/A
4-3 Applied Applied Method-3 N/A N/A N/A N/A
4-4 Applied Applied Method-4 N/A N/A N/A N/A
4-5 Applied Applied Method-5 N/A N/A N/A N/A
5-1 Applied Applied Best method Method-1 N/A N/A N/A
5-2 Applied Applied Best method Method-2 N/A N/A N/A
6-1 Applied Applied Best method Best method Filter-1 N/A N/A
6-2 Applied Applied Best method Best method Filter-2 N/A N/A
6-3 Applied Applied Best method Best method Filter-3 N/A N/A
6-4 Applied Applied Best method Best method Filter-1 and 2 N/A N/A
6-5 Applied Applied Best method Best method Filter-1 and 3 N/A N/A
6-6 Applied Applied Best method Best method Filter-2 and 3 N/A N/A
6-7 Applied Applied Best method Best method Filter-1, 2 and 3 N/A N/A
7 Applied Applied Best method Best method Best method Applied N/A
8 Applied Applied Best method Best method Best method N/A Applied
9 Applied Applied Best method Best method Best method Applied Applied

As a result, we fetched 10,311 HTML texts.
(b) Test texts

As test data, we also collected 939 distinct HTML
texts from the 240 Infoseek subcategory pages. None
of these documents are included in the training data
set. Each of these texts has only one category to be
assigned. Figure 6 shows the number of training and
test texts by category.
4.2 Experiment Methods

We performed nine kinds of experiments, as
shown in Figure 7. In Experiment 1, we do not use
any techniques we have discussed in this paper. That
is, all words in the training texts are used to generate

the KB. In Experiment 2, we apply stemming to
words extracted from the training texts. In Experiment
3, we add stopword deletion. In Experiment 4, we
compare our five methods to normalize the keyword
frequency distribution. In Experiment 5, we compare
our five methods to normalize keyword weight
distribution in each category. In Experiment 6, we
apply three kinds of word filters to the KB. In
Experiment 7, text truncation is applied to query texts.
In Experiment 8, low frequency word deletion is
applied to words extracted from query texts. In
Experiment 9, we apply both text truncation and low
frequent word deletion.

8

4.3 Measures of Evaluation
We use three kinds of measures to evaluate our

methods: categorization accuracy, standard deviation
of accuracy values by category, and KB size.

Each of the test texts has only one correct category
(its Infoseek category), and our system assigns only
one category to each test text. We define
categorization accuracy as the fraction of the test texts
to which our system assigned the correct category.

We also take the distribution of accuracy values
by category into account. We believe that the
categorization system is not good if the accuracy
values of particular categories are low, even though
those of other categories are high. Thus we evaluate
the standard deviation (SD) of the distribution of
accuracy values by category. The SD is calculated as
follows:

SD = sqrt(var)
var = Σ((Ai-m)*(Ai-m))/n
m = ΣAi/n (i=1,…,n)

where var is the variance, m is the average value of
accuracy, Ai is the accuracy of category-i, and n is the
number of categories. The lower the SD value is, the
better the system is. When we discuss the quality of
categorization systems, we should consider both
overall accuracy and the SD.

We use the KB size to evaluate the processing
speed of categorization. In this paper, the KB size
consists of a pair of the number of records and the
number of distinct keywords. If the number of records
is smaller, the speed of similarity calculation is
higher. If the number of distinct keywords is smaller,
the speed of keyword matching between keywords in
a query text and those in the KB is higher. We do not
consider in this paper the time to fetch texts and to
extract words from them.

4.4 Results
[1] Word stemming (#2 in Figure 7)

Figure 8 shows the results of categorization
with/without word stemming. Though stemming does
not improve the accuracy, it reduces KB size by
20.7%. In both results, the SD is very high. Since the
stemming algorithm we adopt might affect the
accuracy, it would be interesting to evaluate it using
other stemming programs. We use word stemming in
all of the following experiments because it
significantly reduces the KB size.
[2] Stopword deletion (#3 in Figure 7)

Figure 8 also shows the results of categorization
with/without stopword deletion. Stopword deletion
improves accuracy by 8.09% (78.27-70.18). The SD
is also improved by 12.25 (33.62-21.37), although it
is still high. Notice that stopword deletion does not
reduce the KB size very much because we use a

Figure 8: Results of stemming and stopword
deletion (#1 to #3).

#
Distinct

keywords
in KB
(kinds)

KB
records

(records)

Relative
of KB
records
(#1 is 1)

Accuracy SD

1 213,184 512,786 1.000 71.03 % 31.59
2 181,708 406,714 0.793 70.18 % 33.62
3 181,112 398,084 0.776 78.27 % 21.37

Figure 9: Results of normalization on text (#4).
Method Accuracy SD
3 - 78.27 % 21.37
4-1 Square root operator 76.68 % 24.12
4-2 Linear mapping 81.36 % 20.58
4-3 Quadratic mapping 82.96 % 21.09
4-4 Square root mapping 80.09 % 20.02
4-5 Relative weight 83.60 % 18.08

Figure 10: Results of normalization on category
(#5).

Method Accuracy SD
4-5 - 83.60 % 18.08
5-1 Square root operator 83.07 % 18.78
5-2 Linear mapping 85.52 % 10.76
5-3 Quadratic mapping 84.77 % 11.47
5-4 Square root mapping 84.35 % 11.14
5-5 Relative weight 84.13 % 11.02

relatively small number of stopwords (670).
[3] How to normalize distribution of word frequency
on each text (#4-1 to #4-5 in Figure 7)

Figure 9 shows the results of categorization
with/without normalization of word frequency
distribution. Method-1, which uses the square root
operator, has worse accuracy than the original scheme
without normalization. The mapping using quadratic
function provides the highest accuracy out of the three
mapping methods. Method-5, which calculates
relative value of word frequency, has the highest
accuracy of the five. However, the accuracy
differences are not major and SDs are still high. We
use Method-5 in the following experiments. Note that
this method does not reduce the KB size at all.
[4] How to normalize distribution of keyword weights
on each category (#5-1 to #5-5 in Figure 7)

Figure 10 shows the results of categorization
with/without normalization of distribution of keyword
weights. The accuracy with linear mapping is a little
higher than that with any other methods. This result is
different from the result of Experiment #4. The
remarkable thing is that SD as well as accuracy is
improved using this normalization. This method does
not reduce KB size, either.

9

Figure 11: Results of keyword filters(#6).

#
Threshold
of Filter-1

Threshold
of Filter-2

Threshold
of Filter-3

Distinct
keywords

in KB (kinds)

KB
records

(records)

Relative # of
KB records
(#1 is 1.000)

Accuracy SD

5-2 - - - 181,112 398,064 0.776 85.52 % 10.76
6-1-1 >1.00 - - 88,860 280,776 0.548 84.77 % 12.35
6-1-2 1.05 - - 37,467 187,626 0.366 83.71 % 15.83
6-1-3 1.10 - - 23,199 146,987 0.287 82.96 % 16.90
6-1-4 1.20 - - 14,247 110,163 0.215 82.53 % 17.14
6-1-5 1.50 - - 7,247 69,554 0.136 82.11 % 17.56
6-1-6 2.00 - - 4,113 45,322 0.088 82.11 % 17.79
6-1-7 3.00 - - 2,154 26,876 0.052 81.36 % 19.65
6-1-8 5.00 - - 1,087 14,522 0.028 80.30 % 20.63
6-1-9 10.00 - - 380 5,383 0.010 78.27 % 20.59
6-1-10 20.00 - - 149 2,109 0.004 75.40 % 20.59
6-1-11 30.00 - - 88 1,274 0.002 73.38 % 19.54
6-1-12 50.00 - - 46 670 0.001 60.81 % 30.14
6-2-1 - 0.10 - 179,032 370,482 0.722 85.62 % 10.57
6-2-2 - 0.15 - 172,290 300,087 0.585 85.94 % 10.46
6-2-3 - 0.20 - 167,856 265,229 0.517 85.84 % 9.67
6-2-4 - 0.25 - 163,932 241,992 0.472 86.16 % 9.20
6-2-5 - 0.30 - 158,500 218,156 0.425 85.62 % 9.43
6-2-6 - 0.35 - 149,042 188,111 0.367 84.88 % 9.78
6-2-7 - 0.40 - 147,459 182,467 0.356 83.92 % 10.23
6-2-8 - 0.45 - 147,133 181,018 0.353 83.60 % 10.60
6-2-9 - 0.50 - 146,982 180,159 0.351 82.96 % 10.40
6-3-1 - - 0.50 172,719 301,077 0.587 85.52 % 11.01
6-3-2 - - 0.80 159,548 228,659 0.446 85.62 % 10.80
6-3-3 - - 0.90 121,677 140,335 0.274 85.20 % 11.25
6-3-4 - - 1.00 9,519 22,204 0.043 82.11 % 18.10
6-3-5 - - 2.00 841 6,278 0.012 80.62 % 19.45
6-3-6 - - 5.00 220 2,575 0.005 76.89 % 20.97
6-3-7 - - 10.00 105 1,422 0.003 76.04 % 19.87
6-3-8 - - 20.00 60 855 0.002 67.20 % 25.81
6-3-9 - - 30.00 34 490 0.001 59.00 % 27.37
6-3-10 - - 50.00 12 165 0.0003 19.60 % 34.14
6-4-1 >1.00 0.25 - 71,929 126,020 0.246 85.30 % 10.81
6-4-2 1.05 0.25 - 23,584 51,677 0.101 84.56 % 13.08
6-4-3 1.10 0.25 - 12,177 31,313 0.061 83.28 % 16.00
6-4-4 1.20 0.25 - 6,406 20,371 0.040 82.64 % 17.02
6-4-5 1.50 0.25 - 2,871 13,251 0.026 81.79 % 17.76
6-5-1 >1.00 - 0.90 49,076 67,734 0.132 84.13 % 12.94
6-5-2 1.05 - 0.90 17,829 36,436 0.071 82.64 % 17.45
6-5-3 1.10 - 0.90 10,033 26,848 0.052 82.00 % 17.81
6-5-4 >1.00 - 1.00 9,519 22,204 0.043 82.11 % 18.10
6-5-5 1.05 - 1.00 9.519 22,204 0.043 82.11 % 18.10
6-5-6 1.10 - 1.00 7,807 20,492 0.040 82.11 % 18.10
6-6-1 - 0.25 0.90 121,324 135,301 0.264 85.94 % 9.53
6-6-2 - 0.25 1.00 9,236 18,112 0.035 82.43 % 16.92
6-7-1 >1.00 0.25 0.90 48,723 62,700 0.122 84.98 % 11.04

[5] Filtering non-important words (#6-1 to #6-7 in
Figure 7)

Experiment #6-1-1 to #6-1-12 in Figure 11 show
the results of categorization with/without Filter-1,
which is based on the maximum value of the weights.
The result shows that this filter can reduce KB size

dramatically, while keeping the accuracy at more than
80%. When the maximum value threshold is 1.20 (#6-
1-4), for example, the number of distinct keywords is
reduced to 7.9% of the original number of words and
the number of KB records to 21.5% of the original
number of records. However, the SD is 17.14, which

10

Figure 12: Results of text truncation and low frequent word deletion (#7, #8 and #9).

#
Threshold

of truncation
(characters)

Threshold
for low frequent
word deletion

Average # of distinct
keywords

in query texts (kinds)

Accuracy SD

6-7-1 - - 274.4 84.98 % 11.04
7-1 10000 - 184.9 84.35 % 11.51
7-2 5000 - 132.2 83.49 % 12.47
7-3 3000 - 95.3 82.75 % 12.34
7-4 1000 - 38.1 79.55 % 15.02
8-1 - 200 75.5 83.92 % 12.95
8-2 - 150 56.2 83.71 % 13.39
8-3 - 100 35.8 82.11 % 14.90
8-4 - 50 14.1 80.09 % 16.79
9-1 5000 200 88.2 83.39 % 12.39
9-2 5000 150 57.5 82.75 % 13.50
9-3 5000 100 37.3 81.47 % 14.24
9-4 5000 50 14.4 79.34 % 16.52
9-5 3000 200 94.3 82.75 % 12.34
9-6 3000 150 77.0 82.53 % 12.30
9-7 3000 100 38.3 80.72 % 14.81
9-8 3000 50 15.2 77.96 % 16.31

is much higher than without this filter. The accuracy is
reduced as the threshold value increases. The SD is
also adversely affected.

Experiment #6-2-1 to #6-2-9 in Figure 11 show
the results of categorization with/without Filter-2,
which is based on relative keyword weight. Although
this filter also reduces the KB size, the rate of
reduction is much less than with Filter-1. However,
this filter improves accuracy and reduces SD. When
the threshold is 0.25, the accuracy is 0.64% higher
than without this filter, and the SD is 9.20. These are
the best values of all experiments. This result shows
that this filter works very well.

Experiment #6-3-1 to #6-3-10 in Figure 11 show
the results of categorization with/without Filter-3,
which is based on the variance of the keyword weight
distribution. When the threshold is less than or equal
to 0.90, the accuracy and SD do not change, while the
KB size, especially the number of KB records is
reduced very much. When the threshold is 1.00,
however, the accuracy becomes worse by 3.1%, and
the SD is also worse by 6.9, while KB size is
dramatically reduced. The reason is that there are
many words appearing only a few times. If word-A
appears only once in training texts and if its weight is
1.0, then the normalized variance is 0.94, according to
the formula described in Section 3.1[3]. This shows
that some of the words with lower frequency
contribute to higher accuracy. This means that we
should consider another method to retain these
important keywords in the KB if we are to use this
filter. For example, it might be useful to use HTML
tag data to assign weights to words.

Experiments #6-4-1 to #6-7-1 in Figure 11 show

the results of categorization using more than one
filter. Since the number of combinations for the three
thresholds is very high, we used only a few values for
each filter, as shown in line #6-1-1 to #6-3-10 of
Figure 11. These results show that some of the
combinations improve KB size while keeping the
accuracy almost constant. The result for Experiment
#6-4-1, for example, shows that the accuracy is almost
the same as that of #6-1-1 or #6-2-4 (where only one
filter is used), and that the KB size is significantly
reduced in comparison with #6-1-1 or #6-2-4. The
result of #6-7-1, where all of three filters are used,
provides an excellent balance between the competing
factors. The accuracy is 84.94%, which is only 1.18%
lower than the best accuracy value. The SD is 11.04,
which is only 1.84 lower than the best one. The
number of distinct keywords is reduced to 26.9% of
those in Experiment #5-1 where no filters are used.
The number of KB records is also reduced to 12.2%
of those in Experiment #1 and 15.7% of those in
Experiment #5-1. We use the KB resulting from this
#6-7-1 set up.
[6] Text truncation (#7-1 to #7-4)

Experiments #7-1 to #7-4 in Figure 12 show the
results of categorization with/without text truncation.
We use 10000, 5000, 3000 and 1000 as the text
threshold length. The percentage of the test texts that
exceed (after HTML tag deletion) is 22.6%, 40.1%,
54.6% and 81.8%, respectively. When the threshold is
5000, the average number of keywords used for
categorization is 48.2% of that used in experiment #6-
7-1. Notice that the accuracy and SD are still good.
The same thing can be said when the threshold is
3000.

11

Figure 13: KB selection for end-users’ preferences.
End-user’s requirement The best KB Accuracy

Accuracy SD KB size
Exp. # Distinct

keywords
KB

records
Accuracy SD

best best - 6-2-4 163,932 241,992 86.16 % 9.20
85% - smaller 6-4-1 71,929 126,020 85.30 % 10.81
85% 10 smaller 6-6-1 121,324 135,301 85.94 % 9.53
80% - smaller 6-3-5 841 6,278 80.62 % 19.45
80% 15 smaller 6-4-2 23,584 51,677 84.56 % 13.08
75% - smaller 6-3-7 105 1,422 76.04 % 19.87
75% 18 smaller 6-4-5 2,871 13,251 81.79 % 17.76

[7] Low frequent word deletion (#8-1 to #8-4)
Experiment #8-1 to #8-4 in Figure 12 show the

results of categorization with/without low frequency
word deletion. We use 200, 150, 100 and 50 as the
value M in the formula in Section 3.2[2]. The results
show that the number of keywords is reduced
dramatically, while the SD is a little worse.
[8] The combination of text truncation and low
frequency word deletion (#9-1 to #9-8)

Experiment #9-1 to #9-8 in Figure 12 show the
results of categorization with both text truncation and
low frequent word deletion. We use 3000 and 5000 as
the thresholds for truncation. Comparing the result of
Experiment #9-1 with the result of #7-2, the average
number of keywords is reduced to 66.7%, while
keeping good accuracy and SD. This shows that the
combination of text truncation and low frequency
word deletion is effective for faster processing.
4.5 Discussion
4.5.1 KB Choice by End-users

The results of our experiments show that our
methods are effective for high accuracy and KB size
reduction. They also show that our system can
generate KBs of different sizes by tuning the
thresholds used in our methods. This means that our
system can use the best KB for end-users to
effectively categorize Web pages. For example, if a
user requires the highest possible accuracy and if s/he
does not care about the processing speed (KB size),
then our system should use the KB used in
Experiment #6-2-4. If s/he requires an accuracy of
more than 80%, a SD of less than 15 and the fastest
speed (the lowest KB size), then our system should
use the KB of #6-4-2, and it should also apply text
truncation and low frequent word deletion. We
believe that it is important for IR systems to accept
users’ preferences in accuracy and processing speed.
Figure 13 shows other examples of end-users’
preferences and the corresponding KB choices.

Notice that the best threshold values depend on
the text types (Web pages, patent documents, news
articles, etc.) and the category definition (number of

categories and exclusiveness of them). It would be
interesting to consider automatic detection of the best
values of these thresholds.
4.5.2 Possibility of further Improvement

In this section, we discuss possible further
improvements for our techniques. We found the
following causes of wrong categorization through the
experiments above.
[1] Category definition

For some Web pages it is difficult to assign only
one category out of the 15 Infoseek categories,
because some of the categories share topics. For
example, since the “computer” category and the
“internet” category overlap, some computer-related
pages, such as the Stanford Digital Library Project
homepage (http://www-diglib.stanford.edu/) should be
assigned to both categories. Furthermore, some Web
pages refer to multiple topics and should be assigned
to quite independent categories. Since our system is
able to assign multiple categories to each page
according to the “confidence value” based on
distribution of similarity values on categories, we
should evaluate the accuracy from a viewpoint of
multiple categorization.
[2] Collection of training data set

In our experiments, we used all of the collected
texts as training data. However, some pages might
have short texts and some might have extremely long
texts. Some might be written in English, but some in
other languages. Some might have only index
information. We should consider how to collect
appropriate training texts. Our system could generate
the KB with higher quality by using more appropriate
training texts.
[3] HTML tags

We used only word frequency to assign keyword
weights. However, frequency is not effective for short
pages. We believe that HTML tags denoting a title or
hyperlinks could be helpful clues to extract keywords
and assign their weights more correctly. We may also
be able to improve the accuracy not only by using
keywords in the page, but also by using URLs which

12

refer to the page and URLs which the page refers to
(Google 1997).
[4] Disambiguation of word meaning

Since we do not apply any methods for word
disambiguation, words with different meaning are
regarded as the same if they have the same spelling.
Researchers have been working on word
disambiguation using co-occurrency of the words
(Hinrich 1997, etc.). We should use this kind of
technique to distinguish the words according to their
meaning and the contexts in which the words are
used.

As future research, it would be interesting to
consider how to collect appropriate training data
semi-automatically from a large set of texts such as
the Web and how to update KBs dynamically.

5. Conclusions
In this paper, we presented methods for Web page

categorization. The results of our experiments are
encouraging. We believe that the IR systems with
information organization functions such as
categorization enable us to search for information
more effectively and comfortably.

Acknowledgment
The authors have benefited from discussions with

Stanford’s Digital Libraries Project members. This
work was supported by NSF, DARPA and NASA
under Stanford’s Digital Libraries contract.

References
[1]Baldonado, M. Q. W., and Winograd, T. 1997.
Sensemaker: An information-exploration interface
supporting the contextual evolution of a user’s
interests. In Proceedings of CHI97, 11-18.
[2]Google. 1997. http://backrub.stanford.edu/.
[3]Hayes, J., and Weinstein, S. P. 1990. CONSTRUE
/TIS: A system for content-based indexing of a
database of news stories. In Proceedings of Second
Annual Conference on Innovative Applications of
Artificial Intelligence, 1-5.
[4]Infoseek 1995. Internet directory and query
service. http://www.infoseek.com.
[5]Infoseek 1996. Aptex categorizes more than
700,000 web sites for infoseek.
http://info.infoseek.com/doc/PressReleases/hnc.html.
[6]Iwayama, M. 1995. Cluster-Based Text
Categorization: A comparison of Category Search
Strategies. In Proceedings of SIGIR1995, 273-280.
[7]Mase, H.; Tsuji, H,; Kinukawa, H.; Hosoya, Y.;
Koutani, K.; and Kiyota, K. 1996. Experimental
simulation for automatic patent categorization. In
Proceedings of Advances in Production Management

Systems, 377-382.
[8]Porter, M. F. 1980. An algorithm for suffix
stripping, 130-137.
[9]Python 1998. http://www.python.org/.
[10]Sahami, M.; Yusufali, S.; and Baldonado, M. Q.
W. 1998. SONIA: A Service for Organizing
Networked Information Autonomously. In
Proceedings of the Third ACM Conference on Digital
Libraries.
[11]Schutze, H. 1997. Ambiguity Resolution in
Language Learning, CSLI Lecture Notes Number 71,
CSLI Publications.
[12]Yahoo! 1995. On-line guide for the internet.
http://www.yahoo.com/.

