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ABSTRACT
We discuss an approach to the automatic expansion of domain�
speci�c lexicons by means of term categorization� a novel
task employing techniques from information retrieval �IR�
and machine learning �ML�� Speci�cally� we view the ex�
pansion of such lexicons as a process of learning previously
unknown associations between terms and domains� The pro�
cess generates� for each ci in a set C � fc�� � � � � cmg of do�
mains� a lexicon Li�� bootstrapping from an initial lexicon
Li� and a set of documents � given as input� The method
is inspired by text categorization �TC�� the discipline con�
cerned with labelling natural language texts with labels from
a prede�ned set of domains� or categories� However� while
TC deals with documents represented as vectors in a space
of terms� we formulate the task of term categorization as
one in which terms are �dually� represented as vectors in a
space of documents� and in which terms �instead of docu�
ments� are labelled with domains�

Keywords
Term categorization� lexicon generation� WordNet

1. INTRODUCTION
The generation of domain�speci�c lexicons �i�e� lexicons con�
sisting of terms pertaining to a given domain or discipline�
is a task of increased applicative interest� since such lexicons
are of the utmost importance in a variety of tasks pertain�
ing to natural language processing and information access�
Unfortunately� the manual generation of domain�speci�c lex�
icons is expensive� since it requires the intervention of spe�
cialized manpower� i�e� lexicographers and domain experts
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working together� Many applications also require that the
lexicons be not only domain�speci�c� but also tailored to the
speci�c data tackled in the application�
In this paper we propose a methodology for the automatic

expansion of domain�speci�c lexicons from a corpus of texts�
This methodology relies on term categorization� a novel task
that employs a combination of techniques from information
retrieval �IR� and machine learning �ML�� Speci�cally� we
view the generation of such lexicons as a process of learn�
ing previously unknown associations between terms and do�

mains �i�e� disciplines� or �elds of activity�� The process
generates� for each ci in a set C � fc�� � � � � cmg of prede�
�ned domains� a lexicon Li�� bootstrapping from a lexicon
Li� given as input� Associations between terms and domains
are learnt from a set of textual documents � �hereafter called
corpus�	 iterating this process allows to enlarge the lexicon
as new corpora become available for learning� The process
builds the lexicons L� � fL��� � � � � L

m
� g for all the domains

C � fc�� � � � � cmg in parallel� from the same corpus �� The
only requirement on � is that at least some of the terms in
each of the lexicons in L� � fL��� � � � � L

m
� g should occur in

it �if none among the terms in a lexicon L
j
� occurs in �� then

no new term is added to L
j
���

This methodology is inspired by text categorization� the
activity of automatically building� by means of machine
learning techniques� automatic text classi�ers� i�e� programs
capable of labelling texts with �zero� one� or several� the�
matic categories from a prede�ned set C � fc�� � � � � cmg 
���
While the purpose of text categorization is that of classify�
ing documents represented as vectors in a space of terms�
the purpose of term categorization� as we formulate it� is
�dually� that of classifying terms represented as vectors in
a space of documents� In this task terms are thus items
that may belong� and must thus be assigned� to �zero� one�
or several� domains belonging to a prede�ned set� In other
words� starting from a set 
i� of preclassi�ed terms� a new
set of terms 
i� is classi�ed� and the terms in 
i� which are
deemed to belong to ci are added to Li� to yield Li�� The set

i� is composed of lexicon Li�� acting as the set of �positive
examples� of ci� plus a set of terms known not to belong to
ci� acting as the set of �negative examples� of ci�
For input to the learning device and to the term classi�ers



that this will eventually build� we use �bag of documents�
representations for terms� dual to the �bag of terms� rep�
resentations commonly used in text categorization� As the
learning device we adopt AdaBoost�MH

KR 
��� a variant
of the AdaBoost�MH

R algorithm proposed in 
���
We have chosen a boosting approach not only because of

its state�of�the�art e�ectiveness� but also because it natu�
rally allows for a form of �data cleaning�� which is useful in
case a lexicographer wants to check the results and edit the
newly generated lexicon� That is� in our term categoriza�
tion context it allows the lexicographer to easily inspect the
classi�ed terms for possible misclassi�cations� since the algo�
rithm� apart from generating the new lexicon Li�� ranks the
terms in Li� in terms of their �hardness�� i�e� how successful
have been the generated classi�ers at correctly recognizing
their label� Since the highest ranked terms are the ones
with the highest probability of having been misclassi�ed 
���
the lexicographer can examine this list starting from the top
and stopping where desired� removing the misclassi�ed ex�
amples� The process of generating a domain�speci�c lexicon
may then become an iteration of generate�and�test steps�
This paper is organized as follows� In Section � we de�

scribe how we represent terms by means of a �bag of docu�
ments� representation� Section � discusses how to combine
the indexing tools introduced in Section � with the boosting
algorithm� and describes the role of the lexicographer in the
lexicon expansion phase� Section � describes the results of
our experiments� in which we attempt to expand �in paral�
lel� �� domain�speci�c lexicons by using a corpus of more
than ������� documents� Section � concludes� pointing to
avenues for improvement�

2. REPRESENTING TERMS IN A SPACE
OF DOCUMENTS

In text categorization applications� the process of building
internal representations of texts is called text indexing� In
text indexing� a document dj is usually represented as a

vector of term weights �dj � hw�j� � � � � wrji� where r is the
cardinality of the dictionary and � � wkj � � represents�
loosely speaking� the contribution of tk to the speci�cation
of the semantics of dj� Usually� the dictionary is equated
with the set of terms that occur at least once in at least �
documents of Tr �with � a prede�ned threshold� typically
ranging between � and ��� Di�erent approaches to text in�
dexing may result from di�erent choices �i� as to what a term
is and �ii� as to how term weights should be computed� A fre�
quent choice for �i� is to use single words �minus stop words�
which are usually removed prior to indexing� or their stems�
Di�erent �weighting� functions may be used for tackling is�
sue �ii�� either of a probabilistic or of a statistical nature	
a frequent choice is the �normalized� tfidf function� which
provides the inspiration for the �term indexing� function we
are going to use in this work�
Text indexing may be viewed as a particular instance of

abstract indexing� a task in which �objects� are represented
by means of �features�� and whose underlying metaphor is�
by and large� that the semantics of an object corresponds to
the bag of features that �occur� in it� In order to illustrate
an example of abstract indexing� let us de�ne a token � to be
a speci�c occurrence of a given feature f��� in a given object
o���� let T be the set of all tokens occurring in any of a set
of objects O� and let F be the set of features of which the

tokens in T are instances� Let us de�ne the feature frequency
ff�fk� oj� of a feature fk in an object oj as

ff�fk� oj� � jf� � T j f��� � fk � o��� � ojgj

We next de�ne the inverted object frequency iof�fk� of a
feature fk as

iof�fk� � log
jOj

jfoj � O j �� � T � f��� � fk � o��� � ojgj

and the weight w�fk� oj� of feature fk in object oj as

wkj � w�fk� oj� �
ff�fk� oj� � iof�fk�qPjF j
s��

�ff�fs� oj� � iof�fs���

We may consider the w�fk� oj� function of this last equation
as an abstract indexing function	 that is� di�erent instances
of this function are obtained by specifying di�erent choices
for the set of objects O and set of features F � The previ�
ously mentioned text indexing function tfidf is obtained by
equating O with the training set of documents and F with
the dictionary	 T � the set of occurrences of elements of F
in the elements of O� thus becomes the set of term occur�
rences� Dually� a term indexing function may be obtained
by switching the roles of F and O� i�e� equating F with the
training set of documents and O with the dictionary	 T � the
set of occurrences of elements of F in the elements of O� is
thus again the set of term occurrences 
���
This approach to term representation is very elegant� in

that it is based on a minimal set of assumptions �namely� the
�extensional� assumption that objects can be represented as
bags of features� and the assumption that occurrence can be
used as �featurehood�� and can be instantiated by means
of any indexing technique �here we have used normalized
tfidf�� either from the tradition of text indexing or not�
Note also that any program or data structure that imple�
ments a text indexing function may be used straightaway�
with no modi�cation� for term indexing� one needs only to
feed the program with the terms in place of the documents
and viceversa�

3. GENERATING DOMAIN-SPECIFIC LEX-
ICONS BY SUPERVISED LEARNING

3.1 Operational methodology
We are now ready to describe the overall process that we
will follow for the expansion of domain�speci�c lexicons� We
start from a set of domain�speci�c lexicons L� � fL��� � � � � L

m
� g�

one for each domain in C � fc�� � � � � cmg� and from a cor�
pus �� We index the terms that occur in � by means of the
term indexing technique described in Section �	 this yields�
for each term tk� a representation consisting of a vector of
weighted documents� the length of the vector being r � j�j�
We then generate m classi�ers � � f��� � � � ��mg by means
of AdaBoost�MH

KR with L� � fL��� � � � � L
m
� g as train�

ing set� While generating the classi�ers� AdaBoost�MH
KR

also produces� for each domain ci� a ranking of the terms in
Li� in terms of how hard it was for the generated classi�ers to
classify them correctly� which basically corresponds to their
probability of being misclassi�ed examples� The lexicogra�
pher can then� if desired� inspect L� and remove the misclas�
si�ed examples� if any �possibly rerunning AdaBoost�MH

KR

on the �cleaned� version of L��� At this point� the terms oc�
curring in � that AdaBoost�MH

KR has classi�ed under ci



are added �possibly� after being checked by the lexicogra�
pher� to Li�� yielding Li��
This process can be further iterated� by using new text

corpora from which to �extract� new terms� In this case
an alternative approach is to involve the lexicographer only
after the last iteration� and not after each iteration�

3.2 Experimental methodology
The process we have described in Section ��� is the one we
would apply in an operational setting� In an experimental
setting� instead� we are also interested in evaluating the ef�
fectiveness of our approach on a benchmark� The di�erence
with the process outlined in Section ��� is that at the be�
ginning of the process the lexicon L� is split into a training
set and a test set	 the classi�ers are learnt from the train�
ing set� and are then tested on the test set by checking how
good they are at extracting the terms in the test set from
the corpus ��
We comply with standard text categorization practice in

evaluating term categorization e�ectiveness by a combina�
tion of precision ���� the percentage of positive categoriza�
tion decisions that turn out to be correct� and recall ���� the
percentage of positive� correct categorization decisions that
are actually taken� Since most classi�ers can be tuned to em�
phasize one at the expense of the other� only combinations
of the two are usually considered signi�cant� Following com�
mon practice� as a measure combining the two we will adopt
their harmonic mean� i�e� F� � ���

���
� When e�ectiveness is

computed for several categories� the results for individual
categories must be averaged in some way	 we will do this
both by microaveraging and macroaveraging� de�ned in the
usual ways �see e�g� 
�� Section ��� and indicated by the �	�
and �M� superscripts� respectively� Microaveraging rewards
classi�ers that behave well on frequent categories �i�e� cat�
egories with many positive test examples�� while classi�ers
that perform well also on infrequent categories are rewarded
by macroaveraging� Whether one or the other should be
adopted obviously depends on the application requirements�

4. EXPERIMENTS
In order to test our approach according to the methodology
of Section ��� we need two types of resources� �i� a corpus ��
which provides the �implicit� representation for terms� and
�ii� a set of domain�speci�c lexicons L� � fL��� � � � � L

m
� g�

As the corpus � we have used Reuters Corpus Volume I

�RCVI�� a set of documents recently made available by Reuters�

for text categorization experimentation and consisting of
������� news stories� Note that� although the texts of RCVI
are labelled by thematic categories� we have not made use
of such labels�

As the domain�speci�c lexicons we have used an exten�
sion of WordNet� WordNet 
�� is a large� widely available�
domain�generic� monolingual� machine�readable dictionary
in which sets of synonymous words are grouped into syn�
onym sets �or synsets� organized into a directed acyclic
graph� WordNetDomains is an extension of WordNet 
�� in
which each synset has been labelled with one or more from
a set of ��� thematic categories� called domains��

�http���www�reuters�com�
�From the point of view of our term categorization task�
the fact that more than one domain may be attached to the
same synset means that ours is a multi�label categorization

For the purpose of the experiments reported in this pa�
per� we have used a simpli�ed variant of WordNetDomains�
called WordNetDomains����� This was obtained from Word�

NetDomains by considering only �� highly relevant domains�
and tagging by a given domain ci also the synsets that� in
WordNetDomains� were tagged by the domains immediately
related to ci in a hierarchical sense �that is� the parent do�
main of ci and all the children domains of ci�� This restric�
tion to the �� most signi�cant domains allows to obtain a
good compromise between the con�icting needs of avoiding
data sparseness and preventing the loss of relevant semantic
information�

4.1 The results
Figure � reports several experiments run for di�erent choices
of the subset of RCVI chosen as the corpus �� We �rst
describe the structure of a generic experiment� and then
go on to describe the sequence of di�erent experiments we
have run� In our experiments so far we have considered only
nouns �there are ������ of them in WordNetDomains��
In each experiment� we perform a document �ltering phase

by discarding all documents that do not contain any term
from the training lexicon Tr� since they do not contribute in
representing the meaning of training terms� and thus could
not possibly be of any help in building the classi�ers� Next�
we perform a term �ltering phase� in which we discard �i�
all �empty� training terms� i�e� training terms that are not
contained in any document of �� since they could not pos�
sibly contribute to learning the classi�ers	 �ii� empty test
terms� since no algorithm that extracts terms from corpora
could possibly extract them	 �iii� terms that occur in � but
belong neither to the training set Tr nor to the test set Te�
We then lemmatize all remaining documents and annotate

the lemmas with part�of�speech tags	 we also use the Word�

Net morphological analyzer in order to resolve ambiguities
and lemmatization mistakes� The �nal set of terms that re�
sults from this process is randomly divided into a training
set Tr �consisting of two thirds of the entire set� and a test
set Te �one third�� As negative training examples of cate�
gory ci we choose all the training terms that are not positive
examples of ci� We have repeated each experiment several
times by considering only training and test terms occurring
in at least x documents� so all curves in Figure � plot F� as
a function of x�

4.1.1 Experiment 1: Using a subset of RCVI
In our �rst experiment �see Figure ��top� � �one mon�

th�� we have used only a subset of the RCVI corpus� cor�
responding to the news stories produced in an entire month
����������� to ���������� � ������ documents�� with the
purpose of getting a feel for the dimensions of the problem
that need investigation	 for the same reason� in the same
experiment we have used only a small number of boosting
iterations ������ There are ����� terms in WordNetDomains

after the term �ltering phase described above�
The low values of F� are mostly the result of low recall

values� while precision tends to be much higher	 for instance�
the F�

� value of ����� obtained for x � ��� is the result of the
values �� � ���� and �� � ����� One way of improving F�
could be tuning AdaBoost�MH

KR so as to increase recall
at the expense of precision� since F� is maximized when
precision equals recall� Although this would be easy �e�g�

task 
�� Section �����
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Figure �� Results obtained on the automated lexicon expansion task� Plots report micro�averaged F� �left�
most� and macro�averaged F� �rightmost� as a function of x� representing the minimal number of documents
in which training and test terms must occur in order to be taken into consideration�

by using the simple technique described in 
���� we have not
pursued this line of work� for the simple reason that this
work would not bring interesting insights into the problem�

The results in Figure ��top� show a constant and de�nite
improvement when higher values of x are used� despite the
fact that� as we have found� higher levels of x mean a higher
degree of polysemy� i�e� a higher average number of labels
per term �e�g� this increases from ���� for x � � to ���� for
x � ���� which tends to confuse a learning device� This
behaviour is not surprising� since when a term occurs e�g� in
one document only� this means that only one entry in the
vector that represents the term is non�null �i�e� signi�cant��
This is in sharp contrast with text categorization� in which
the number of non�null entries in the vector representing a
document equals the number of distinct terms contained in
the document� and is usually at least in the hundreds�

4.1.2 Experiment 2: Using the full RCVI
In our second experiment we have run our system on the

entire set of ������� RCVI documents �this means ������
terms left in WordNetDomains after term �ltering�� since
we wanted to test whether performance can be improved
by increasing signi�cantly the number of documents from
which terms have to be �extracted�� That this should hap�
pen would be a plausible hypothesis� since more documents
mean� on average� a higher number of occurrences per term
�since there is a �nite number of terms inWordNetDomains������
hence a more reliable indication of the typical contexts in
which a given term occurs� The results of this experiment
�reported in Figure ��top� � �one year�� indicate that this
is not the case� since in going from ������ documents to
������� documents� performance deteriorates� One likely

explanation of this fact is that this move produces a sharp
decrease of the ratio between the number of objects and the
number of features that describe these objects� a ratio that
is conceptually akin to the one between the constraints of a
problem and the number of its variables�
We have then run a small experiment �not reported in

Figure �� since we have run just the x � � case� aimed at
verifying whether this somehow disappointing result might
also be due to RCVI containing too many documents that
were not signi�cant enough in determining the �meaning� of
our terms� This experiment consisted in �rst applying a pass
of feature selection aimed at selecting the documents that
are the best discriminators between the presence and the ab�
sence of a category� Following common text categorization
practice� we scored each of the ������� RCVI documents by
the information gain function �globalized by means of the
fmax method � see e�g� 
�� Section ������ and selected the ��
best scoring documents� The performance improvement was
not terribly signi�cant� i�e� we obtained only a �� improve�
ment over the F�

� value obtained without feature selection
on the full RCVI� This is in line with the result obtained in
the text categorization experiments of 
����

4.1.3 Experiment 3: Using sentences instead of doc-
uments

In our third experiment we reverted to the original set of
documents of Experiment � and tested whether sentences
can be better features than documents in term categoriza�
tion� We obtained this by segmenting each of the ������
documents into sentences �i�e� using the full period as the
separator� and considering each of the resulting ������� sen�
tences as a �document�� That this could be the case would



be a plausible hypothesis� since it seems intuitive that a sen�
tence could have higher �domain coherence� �i�e� less uni�
form distribution of domains� than an entire document�
The results show a performance deterioration in mov�

ing from documents to sentences� as can be seen in Fig�
ure ��bottom�� Again� a possible explanation of this fact
is the decrease of the ratio between the number of objects
and the number of features that describe these objects �see
Experiment ���

4.1.4 Experiment 4: Augmenting the number of iter-
ations

In our fourth experiment we have reverted to the full
RCVI with no feature selection and to using documents in�
stead of sentences� and have tested whether augmenting the
number of AdaBoost�MH

KR iterations could improve the
performance signi�cantly� The results of this experiment
have been fairly encouraging� since for x � � the value of
F
�
� increases from ���� �for ��� iterations� to ���� ����� it�

erations� to ���� ����� iterations�� This improvement is due
to a sharp increase in recall� while precision stays basically
constant� We plan to explore this dimension of the problem
more thoroughly in our next experiments�

5. CONCLUSION
We have reported an approach to the automatic expansion
of domain�speci�c lexicons by the combination of �i� a dual
interpretation of IR�style text indexing theory and �ii� a su�
pervised learning approach� The advantages of our method
are that it does not require pre�existing semantic knowledge�
and that it is particularly suited to the situation in which
several domain�speci�c lexicons need to be extended in par�
allel� and to the situation in which no labelled text corpora
are available�
Our experiments suggest that the approach is viable� al�

though large margins of improvement still exist� F� values
are still low� at least if compared to the F� values that have
been obtained in text categorization research on the same
corpus 
��� so work is still needed in tuning this approach in
order to obtain signi�cant categorization performance�

Anyway� the very fact that the F� scores are much lower
than the ones usually obtained in text categorization by the
same kind of �extensional representation � supervised learn�
ing� approach proves that term categorization is a harder
task than text categorization� Why this is so is not entirely
clear� since the metaphor according to which the meaning
of a text �coincides� with the terms it contains �a metaphor
that has proven so successful in text categorization� is in
principle no more powerful or intuitive than the dual metaphor
according to which the meaning of a term coincides with the
texts it is contained in� We conjecture that the substantial
di�erence in performance between the two cases might be
due to the fact that� while in text categorization there often
are features with very high discriminative power� this does
not seem to be the case for term categorization� For in�
stance� in the Reuters������ collection there are categories
that can be almost perfectly discriminated by means of a
single term �i�e� the term is present in most positive exam�
ples and absent in most negative ones�	 conversely� it seems
hardly thinkable that a document �be it in Reuters������ or
not� might be composed of only and all the terms belonging
to a given domain� A more direct proof of this fact is the
di�erence in the values that the information gain function

has in term categorization and text categorization� in our
term categorization experiments on the full RCVI corpus our
highest scoring features had information gain values roughly
�� times lower than the information gain values of the high�
est scoring features in a Reuters������ text categorization
experiment we have run separately� Since information gain
is a direct measure of the discriminative power of a feature�
this result alone indicates how much harder is term catego�
rization than text categorization�
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