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Abstract

We study an approach to text categorization that combines distributional clustering of words and a
Support Vector Machine (SVM) classifier. This word-cluster representation is computed using the
recently introducedInformation Bottleneckmethod, which generates a compact and efficient rep-
resentation of documents. When combined with the classification power of the SVM, this method
yields high performance in text categorization. This novel combination of SVM with word-cluster
representation is compared with SVM-based categorization using the simpler bag-of-words (BOW)
representation. The comparison is performed over three known datasets. On one of these datasets
(the 20 Newsgroups) the method based on word clusters significantly outperforms the word-based
representation in terms of categorization accuracy or representation efficiency. On the two other sets
(Reuters-21578 and WebKB) the word-based representation slightly outperforms the word-cluster
representation. We investigate the potential reasons for this behavior and relate it to structural
differences between the datasets.

1. Introduction

The most popular approach to text categorization has so far been relying on a simple document
representation in a word-based “input space”. Despite considerable attempts to introduce more
sophisticated techniques for document representation, like ones that are based on higher order word
statistics (Caropreso et al., 2001), NLP (Jacobs, 1992; Basili et al., 2000), “string kernels” (Lodhi
et al., 2002) and even representations based on word clusters (Baker and McCallum, 1998), the
simple minded independent word-based representation, known asBag-Of-Words (BOW), remained
very popular. Indeed, to-date the best categorization results for the well-known Reuters-21578 and
20 Newsgroups datasets are based on the BOW representation (Dumais et al., 1998; Weiss et al.,
1999; Joachims, 1997).
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In this paper we empirically study a familiar representation technique that is based onword-
clusters. Our experiments indicate that text categorization based on this representation can outper-
form categorization based on the BOW representation, although the performance that this method
achieves may depend on the chosen dataset. These empirical conclusions about the categoriza-
tion performance of word-cluster representations appear to be new. Specifically, we apply the re-
cently introducedInformation Bottleneck (IB)clustering framework (Tishby et al., 1999; Slonim
and Tishby, 2000, 2001) for generating document representation in a wordclusterspace (instead of
word space), where each cluster is a distribution over document classes. We show that the combina-
tion of this IB-based representation with a Support Vector Machine (SVM) classifier (Boser et al.,
1992; Sch¨olkopf and Smola, 2002) allows for high performance in categorizing three benchmark
datasets: 20 Newsgroups (20NG), Reuters-21578 and WebKB. In particular, our categorization of
20NG outperforms the strong algorithmic word-based setup of Dumais et al. (1998) (in terms of cat-
egorization accuracy or representation efficiency), which achieved the best reported categorization
results for the 10 largest categories of the Reuters dataset.

This representation using word clusters, where words are viewed as distributions over docu-
ment categories, was first suggested by Baker and McCallum (1998) based on the “distributional
clustering” idea of Pereira et al. (1993). This technique enjoys a number of intuitively appealing
properties and advantages over other feature selection (or generation) techniques. First, the di-
mensionality reduction computed by this word clustering implicitly considers correlations between
the various features (terms or words). In contrast, popular “filter-based” greedy approaches for
feature selection such as Mutual Information, Information Gain and TFIDF (see, e.g., Yang and
Pedersen, 1997) only consider each feature individually. Second, the clustering that is achieved
by the IB method provides a good solution to the statistical sparseness problem that is prominent
in the straightforward word-based (and even more so inn-gram-based) document representations.
Third, the clustering of words generates extremely compact representations (with minor information
compromises) that enable strong but computationally intensive classifiers. Besides these intuitive
advantages, the IB word clustering technique is formally motivated by the Information Bottleneck
principle, in which the computation of word clusters aims to optimize a principled target function
(see Section 3 for further details).

Despite these conceptual advantages of this word cluster representation and its success in cate-
gorizing the 20NG dataset, we show that it does not improve accuracy over BOW-based categoriza-
tion, when it is used to categorize the Reuters dataset (ModApte split) and a subset of the WebKB
dataset. We analyze this phenomenon and observe that the categories of documents in Reuters and
WebKB are less “complex” than the categories of 20NG in the sense that documents can almost be
“optimally” categorized using a small number of keywords. This is not the case for 20NG, where
the contribution of low frequency words to text categorization is significant.

The rest of this paper is organized as follows. In Section 2 we discuss the most relevant related
work. Section 3 presents the algorithmic components and the theoretical foundation of our scheme.
Section 4 describes the datasets we use and their textual preprocessing in our experiments. Section 5
presents our experimental setup and Section 6 gives a detailed description of the results. Section 7
discusses these results. Section 8 details the computational efforts in these experiments. Finally, in
Section 9 we conclude and outline some open questions.
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2. Related Results

In this section we briefly overview results which are most relevant for the present work. Thus, we
limit the discussion to relevant feature selection and generation techniques, and best known cate-
gorization results over the corpora we consider (Reuters-21578, the 20 Newsgroups and WebKB).
For more comprehensive surveys on text categorization the reader is referred to Sebastiani (2002);
Singer and Lewis (2000) and references therein. Throughout the discussion we assume familiarity
with standard terms used in text categorization.1

We start with a discussion of feature selection and generation techniques. Dumais et al. (1998)
report on experiments with multi-labeled categorization of the Reuters dataset. Over a BOW binary
representation (where each word receives a count of 1 if it occurs once or more in a document and
0 otherwise) they applied the Mutual Information index for feature selection. Specifically, letC
denote the set of document categories and letXc ∈ {0,1} be a binary random variable denoting the
event that a random document belongs (or not) to categoryc ∈C. Similarly, let Xw ∈ {0,1} be a
random variable denoting the event that the wordw occurred in a random document. The Mutual
Information betweenXc andXw is

I(Xc,Xw) = ∑
Xc,Xw∈{0,1}

P(Xc,Xw) log
P(Xc,Xw)

P(Xc)P(Xw)
. (1)

Note that when evaluatingI(Xc,Xw) from a sample of documents, we computeP(Xc,Xw), P(Xc) and
P(Xw) using their empirical estimates.2 For each categoryc, all the words are sorted according to
decreasing value ofI(Xc,Xw) and thek top scored words are kept, wherek is a pre-specified or data-
dependent parameter. Thus, for each category there is a specialized representation of documents
projected to the most discriminative words for the category.3 In the sequel we refer to this Mutual
Information feature selection technique as “MI feature selection” or simply as “MI”.

Dumais et al. (1998) show that together with a Support Vector Machine (SVM) classifier, this
MI feature selection method yields a 92.0% break-even point (BEP) on the 10 largest categories in
the Reuters dataset.4 As far as we know this is the best multi-labeled categorization result of the (10
largest categories of the) Reuters dataset. Therefore, in this work we consider the SVM classifier
with MI feature selection as a baseline for handling BOW-based categorization. Some other recent
works also provide strong evidence that SVM is among the best classifiers for text categorization.
Among these works it is worth mentioning the empirical study by Yang and Liu (1999) (who showed
that SVM outperforms other classifiers, including kNN and Naive Bayes, on Reuters with both large
and small training sets) and the theoretical account of Joachims (2001) for the suitability of SVM
for text categorization.

1. Specifically, we refer to precision/recall-based performance measures such as break-even-point (BEP) and F-measure
and to uni-labeled and multi-labeled categorization. See Section 5.1 for further details.

2. Consider, for instance,Xc = 1 andXw = 1. ThenP(Xc,Xw) = Nw(c)
N(c) , P(Xc) = N(c)

N , P(Xw) = Nw
N , whereNw(c) is a

number of occurrences of wordw in categoryc, N(c) is the total number of words inc, Nw is a number of occurrences
of word w in all the categories, andN is the total number of words.

3. Note that throughout the paper we consider categorization schemes that decomposem-category categorization prob-
lems intombinary problems in a standard “one-against-all” fashion. Other decompositions based on error correcting
codes are also possible; see (Allwein et al., 2000) for further details.

4. It is also shown in (Dumais et al., 1998) that SVM is superior to other inducers (Rocchio, decision trees, Naive Bayes
and Bayesian Nets).
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Baker and McCallum (1998) apply the distributional clustering scheme of Pereira et al. (1993)
(see Section 3) for clustering words represented as distributions over categories of the documents
where they appear. Given a set of categoriesC = {ci}mi=1, a distribution of a wordw over the
categories is{P(ci |w)}mi=1. Then the words (represented as distributions) are clustered using an
agglomerative clustering algorithm. Using a naive Bayes classifier (operated on these conditional
distributions) the authors tested this method for uni-labeled categorization of the 20NG dataset and
reported an 85.7% accuracy. They also compare this word cluster representation to other feature
selection and generation techniques such as Latent Semantic Indexing (see, e.g., Deerwester et al.,
1990), the above Mutual Information index and the Markov “blankets” feature selection technique
of Koller and Sahami (1996). The authors conclude that categorization that is based on word clus-
ters is slightly less accurate than the other methods while keeping a significantly more compact
representation.

The “distributional clustering” approach of Pereira et al. (1993) is a special case of the general
Information Bottleneck (IB)clustering framework presented by Tishby et al. (1999); see Section 3.1
for further details. Slonim and Tishby (2001) further study the power of this distributional word
clusters representation and motivate it within the more general IB framework (Slonim and Tishby,
2000). They show that categorization based on this representation can improve the accuracy over
the BOW representation whenever the training set is small (about 10 documents per category).
Specifically, using a Naive Bayes classifier on a dataset consisting of 10 categories of 20NG, they
observe 18.4% improvement in accuracy over a BOW-based categorization.

Joachims (1998b) used an SVM classifier for a multi-labeled categorization of Reuters without
feature selection, and achieved a break-even point of 86.4%. Joachims (1997) also investigates uni-
labeled categorization of the 20NG dataset, and applies the Rocchio classifier (Rocchio, 1971) over
TFIDF-weighted (see, e.g., Manning and Sch¨utze, 1999) BOW representation that is reduced using
the Mutual Information index. He obtains 90.3% accuracy, which to-date is, to our knowledge, the
best published accuracy of a uni-labeled categorization of the 20NG dataset. Joachims (1999) also
experiments with SVM categorization of the WebKB dataset (see details of these results in the last
row in Table 1).

Schapire and Singer (1998) consider text categorization using a variant ofAdaBoost(Freund and
Schapire, 1996) applied with one-level decision trees (also known asdecision stamps) as the base
classifiers. The resulting algorithm, called BoosTexter, achieves 86.0% BEP on all the categories
of Reuters (ModApte split). Weiss et al. (1999) also employ boosting (using decision trees as the
base classifiers and an adaptive resampling scheme). They categorize Reuters (ModApte split)
with 87.8% BEP using the largest 95 categories (each having at least 2 training examples). To our
knowledge this is the best result that has been achieved on (almost) the entire Reuters dataset.

Table 1 summarizes the results that were discussed in this section.

3. Methods and Algorithms

The text categorization scheme that we study is based on two components: (i) a representation
scheme of documents as “distributional clusters” of words, and (ii) an SVM inducer. In this sec-
tion we describe both components. Since SVMs are rather familiar and thoroughly covered in the
literature, our main focus in this section is on the Information Bottleneck method and distributional
clustering.
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Authors Dataset Feature Classifier Main Result Comments
Selection or
Generation

Dumais et al. (1998) Reuters MI and other SVM, Rocchio, SVM + MI is Our baseline
feature decision trees, best: 92.0% BEP for Reuters
selection Naive Bayes, on 10 largest (10 largest
methods Bayesian nets categories categories)

Joachims (1998b) Reuters none SVM 86.4% BEP
Schapire and Singer Reuters none Boosting 86% BEP
(1998) (BoosTexter)
Weiss et al. (1999) Reuters none Boosting of 87.8% BEP Best on 95

decision trees categories
of Reuters

Yang and Liu (1999) Reuters none SVM, kNN, SVM is best: 95 categories
LLSF, NB 86% F-measure

Joachims (1997) 20NG MI over Rocchio 90.3% accuracy Our baseline
TFIDF (uni-labeled) for 20NG
representation

Baker and 20NG Distributional Naive Bayes 85.7% accuracy
McCallum (1998) clustering (uni-labeled)
Slonim and Tishby 10 cate- Information Naive Bayes Up to 18.4%
(2000) gories Bottleneck improvement over

of 20NG BOW on small
training sets

Joachims (1999) WebKB none SVM 94.2% - “course” Our baseline
79.0% - “faculty” for WebKB
53.3% - “project”
89.9% - “student”

Table 1: Summary of related results.

3.1 Information Bottleneck and Distributional Clustering

Data clustering is a challenging task in information processing and pattern recognition. The chal-
lenge is both conceptual and computational. Intuitively, when we attempt to cluster a dataset, our
goal is to partition it into subsets such that points in the same subset are more “similar” to each other
than to points in other subsets. Common clustering algorithms depend on choosing a similarity mea-
sure between data points and a “correct” clustering result can be dependent on an appropriate choice
of a similarity measure. The choice of a “correct” measure must be defined relative to a particular
application. For instance, consider a hypothetical dataset containing articles by each of two authors,
so that half of the articles authored by each author discusses one topic, and the other half discusses
another topic. There are two possible dichotomies of the data which could yield two different bi-
partitions: according to the topic or according to the writing style. When asked to cluster this set
into two sub-clusters, one cannot successfully achieve the task without knowing the goal. Therefore,
without a suitable target at hand and a principled method for choosing a similarity measure suitable
for the target, it can be meaningless to interpret clustering results.

The Information Bottleneck (IB)method of Tishby, Pereira, and Bialek (1999) is a framework
that can in some cases provide an elegant solution to this problematic “metric selection” aspect of
data clustering. Consider a dataset given by i.i.d. observations of a random variableX. Informally,

1187



BEKKERMAN, EL-YANIV, TISHBY, AND WINTER

the IB method aims to construct a relevant encoding of the random variableX by partitioningX
into domains that preserve (as much as possible) the Mutual Information betweenX and another
“relevance” variable,Y. The relation betweenX andY is made known via i.i.d. observations from
the joint distributionP(X,Y). Denote the desired partition (clustering) ofX by X̃. We determineX̃
by solving the following variational problem:Maximize the Mutual Information I(X̃,Y) with respect
to the partition P(X̃|X), under a minimizing constraint on I(X̃,X). In particular, the Information
Bottleneck method considers the following optimization problem: Maximize

I(X̃,Y)−βI(X̃,X)

over the conditionalP(X̃|X), where the parameterβ determines the allowed amount of reduction
in information thatX̃ bears onX. Namely, we attempt to find the optimal tradeoff between the
minimal partition ofX and the maximum preserved information onY. Tishby et al. (1999) show
that a solution for this optimization problem is characterized by

P(X̃|X) =
P(X̃)

Z(β,X)
exp

[
−β∑

Y

P(Y|X) ln

(
P(Y|X)
P(Y|X̃)

)]
,

whereZ(β,X) is a normalization factor, andP(Y|X̃) in the exponential is defined implicitly, through
Bayes’ rule, in terms of the partition (assignment) rulesP(X̃|X), P(Y|X̃)= 1

P(X̃) ∑X P(Y|X)P(X̃|X)P(X)
(see Tishby et al., 1999, for details). The parameterβ is a Lagrange multiplier introduced for the
constrained information, but using a thermodynamical analogyβ can also be viewed as an inverse
temperature, and can be utilized as anannealingparameter to choose a desired cluster resolution.

Before we continue and present the IB clustering algorithm in the next section, we note on the
contextual background of the IB method and its connection to “distributional clustering”. Pereira,
Tishby, and Lee (1993) introduced “distributional clustering” for distributions of verb-object pairs.
Their algorithm clustered nouns represented as distributions over co-located verbs (or verbs repre-
sented as distributions over co-located nouns). This clustering routine aimed at minimizing the av-
erage distributional similarity (in terms of the Kullback-Leibler divergence, see Cover and Thomas,
1991) between the conditionalP(verb|noun) and the noun centroid distributions (i.e. these centroids
are also distributions over verbs). It turned out that this routine is a special case of the more gen-
eral IB framework. IB clustering has since been used to derive a variety of effective clustering and
categorization routines (see, e.g., Slonim and Tishby, 2001; El-Yaniv and Souroujon, 2001; Slonim
et al., 2002) and has interesting extensions (Friedman et al., 2001; Chechik and Tishby, 2002). We
note also that unlike other variants of distributional clustering (such as the PLSI approach of Hoff-
man, 2001), the IB method is not based on a generative (mixture) modelling approach (including
their assumptions) and is therefore more robust.

3.2 Distributional Clustering via Deterministic Annealing

Given the IB Markov chain conditioñX ↔ X ↔ Y (which is not an assumption on the data; see
Tishby et al., 1999, for details), a solution to the IB optimization satisfies the following self-
consistent equations:

P(X̃|X) =
P(X̃)

Z(β,X)
exp

[
−β∑

Y

P(Y|X) ln

(
P(Y|X)
P(Y|X̃)

)]
; (2)
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P(X̃) = ∑
X

P(X)P(X̃|X); (3)

P(Y|X̃) = ∑
X

P(Y|X)P(X|X̃). (4)

Tishby et al. (1999) show that a solution can be obtained by starting with an arbitrary solution
and then iterating the equations. For any value ofβ this procedure is guaranteed to converge.5

Lower values of theβ parameter (high “temperatures”) correspond to poor distributional resolution
(i.e. fewer clusters) and higher values ofβ (low “temperatures”) correspond to higher resolutions
(i.e. more clusters).

Input:
P(X,Y) - Observed joint distribution of two random variablesX andY
k - desired number of centroids
βmin, βmax - minimal / maximal values ofβ
ν > 1 - annealing rate
δconv> 0 - convergence threshold,δmerge> 0 - merging threshold

Output:
Cluster centroids, given by{P(Y|x̃i)}ki=1
Cluster assignment probabilities, given byP(X̃|X)

Initiate β← βmin - currentβ parameter
Initiate r← 1 - current number of centroids
repeat
{ 1. “EM”-like iteration: }
Compute P(X̃|X), P(X̃) andP(Y|X̃) using Equations (2), (3) and (4) respectively
repeat

Let Pold(X̃|X)← P(X̃|X)
Compute new values forP(X̃|X), P(X̃) andP(Y|X̃) using (2), (3) and (4)

until for eachx: ‖P(X̃|x)−Pold(X̃|x)‖< δconv

{ 2. Merging:}
for all i, j ∈ [1, r] s.t. i < j and‖P(Y|x̃i)−P(Y|x̃j)‖< δmergedo

Merge x̃i andx̃j : P(x̃i |X) = P(x̃i |X)+P(x̃j |X)
Let r← r−1

end for
{ 3. Centroid ghosting:}
for all i ∈ [1, r] do

Create x̃r+i s.t.‖P(Y|x̃r+i)−P(Y|x̃i)‖= δmerge

Let P(x̃i |X)← 1
2P(x̃i |X), P(x̃r+i |X)← 1

2P(x̃i |X)
end for
Let r← 2r, β← νβ

until r > k or β > βmax

If r > k then merger−k closest centroids (each to its closest centroid neighbor)

Algorithm 1: Information Bottleneck distributional clustering

We use a hierarchical top-down clustering procedure for recovering the distributional IB clus-
ters. A pseudo-code of the algorithm is given in Algorithm 1.6 Starting with one cluster (very small
β) that contains all the data we incrementally achieve the desired number of clusters by performing
a process consisting ofannealing stages. At each annealing stage we incrementβ and attempt to

5. This procedure is analogous to the Blahut-Arimoto algorithm in Information Theory (Cover and Thomas, 1991).
6. A similar annealing procedure, known asdeterministic annealing, was introduced in the context of clustering by

Rose (1998).
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split existing clusters. This is done by creating (for each centroid) a new “ghost” centroid at some
random small distance from the original centroid. We then attempt to cluster the points (distribu-
tions) using all (original and ghost) centroids by iterating the above IB self-consisting equations,
similar to theExpectation-Maximization (EM)algorithm (Dempster et al., 1977). During these iter-
ations the centroids are adjusted to their (locally) optimal positions and (depending on the annealing
increment ofβ) some “ghost” centroids can merge back with their centroid sources. Note that in
this scheme (as well as in the similar deterministic annealing algorithm of Rose, 1998), one has to
use an appropriate annealing rate in order to identifyphase transitionswhich correspond to cluster
splits.

An alternative agglomerative (bottom-up) hard-clustering IB algorithm was developed by Slonim
and Tishby (2000). This algorithm generates hard clustering of the data and thus approximates the
above IB clustering procedure. Note that the time complexity of this algorithm isO(n2), wheren is
the number of data points (distributions) to be clustered (see also an approximate faster agglomera-
tive procedure by Baker and McCallum, 1998).

The application of the IB clustering algorithm in our context is straightforward. The variableX
represents words that appear in training documents. The variableY represents class labels and thus,
the joint distributionP(X,Y) is characterized by pairs(w,c), wherew is a word andc is the class
label of the document wherew appears. Starting with the observed conditionals{P(Y = c|X = w)}c
(giving for each wordw its class distribution) we cluster these distributions using Algorithm 1.
For a pre-specified number of clustersk the output of Algorithm 1 is: (i)k centroids, given by the
distributions{P(X̃ = w̃|X = w)}w̃ for each wordw, wherew̃ are the word centroids (i.e. there are
k such word centroids which representk word clusters); (ii) Cluster assignment probabilities given
by P(X̃|X). Thus, each wordw may (partially) belong to allk clusters and the association weight of
w to the cluster represented by the centroid ˜w is P(w̃|w).

The time complexity of Algorithm 1 isO(c1c2mn), wherec1 is an upper limit on the number
of annealing stages,c2 is an upper limit on the number of convergence stages,m is the number of
categories andn is the number of data points to cluster.

In Table 2 we provide an example of the output of Algorithm 1 applied to the 20NG cor-
pus (see Section 4.2) with bothk = 300 andk = 50 cluster centroids. For instance, we see that
P(w̃4|attacking)= 0.99977 andP(w̃1|attacking) = 0.000222839. Thus, the word “attacking” mainly
belongs to cluster ˜w4. As can be seen, all the words in the table belong to a single cluster or mainly
to a single cluster. With values ofk in this range this behavior is typical to most of the words in
this corpus (the same is also true for the Reuters and WebKB datasets). Only a small fraction of
less than 10% of words significantly belong to more than one cluster, for any number of clusters
506 k 6 500. It is also interesting to note that IB clustering often results in word stemming. For in-
stance, “atom” and “atoms” belong to the same cluster. Moreover, contextually synonymous words
are often assigned to the same cluster. For instance, many “computer words” such as “computer”,
“hardware”, “ibm”, “multimedia”, “pc”, “processor”, “software”, “8086” etc. compose the bulk of
one cluster.

3.3 Support Vector Machines (SVMs)

The Support Vector Machine (SVM)(Boser et al., 1992; Sch¨olkopf and Smola, 2002) is a strong
inductive learning scheme that enjoys a considerable theoretical and empirical support. As noted in
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Word Clustering to 300 clusters Clustering to 50 clusters

at w̃97 (1.0) w̃44 (0.996655) ˜w21 (0.00334415)
ate w̃205 (1.0) w̃42 (1.0)
atheism w̃56 (1.0) w̃3 (1.0)
atheist w̃76 (1.0) w̃3 (1.0)
atheistic w̃56 (1.0) w̃3 (1.0)
atheists w̃76 (1.0) w̃3 (1.0)
atmosphere w̃200 (1.0) w̃33 (1.0)
atmospheric w̃200 (1.0) w̃33 (1.0)
atom w̃92 (1.0) w̃13 (1.0)
atomic w̃92 (1.0) w̃35 (1.0)
atoms w̃92 (1.0) w̃13 (1.0)
atone w̃221 (1.0) w̃14 (0.998825) ˜w13 (0.00117386)
atonement w̃221 (1.0) w̃12 (1.0)
atrocities w̃4 (0.99977)w̃1 (0.000222839) w̃5 (1.0)
attached w̃251 (1.0) w̃30 (1.0)
attack w̃71 (1.0) w̃28 (1.0)
attacked w̃4 (0.99977)w̃1 (0.000222839) w̃10 (1.0)
attacker w̃103 (1.0) w̃28 (1.0)
attackers w̃4 (0.99977)w̃1 (0.000222839) w̃5 (1.0)
attacking w̃4 (0.99977)w̃1 (0.000222839) w̃10 (1.0)
attacks w̃71 (1.0) w̃28 (1.0)
attend w̃224 (1.0) w̃15 (1.0)
attorney w̃91 (1.0) w̃28 (1.0)
attribute w̃263 (1.0) w̃22 (1.0)
attributes w̃263 (1.0) w̃22 (1.0)

Table 2: A clustering example of 20NG words. ˜wi are centroids to which the words “belong”, the
centroid weights are shown in the brackets.

Section 2 there is much empirical support for using SVMs for text categorization (Joachims, 2001;
Dumais et al., 1998, etc.).

Informally, for linearly separable two-class data, the (linear) SVM computes themaximum mar-
gin hyperplane that separates the classes. For non-linearly separable data there are two possible
extensions. The first (Cortes and Vapnik, 1995) computes a “soft” maximum margin separating
hyperplane that allows for training errors. The accommodation of errors is controlled using a fixed
cost parameter. The second solution is obtained by implicitly embedding the data into a high (or
infinite) dimensional space where the data is likely to be separable. Then, a maximum margin hy-
perplane is sought in this high-dimensional space. A combination of both approaches (soft margin
and embedding) is often used.

The SVM computation of the (soft) maximum margin is posed as a quadratic optimization
problem that can be solved in time complexity ofO(kn2), wheren is the training set size andk is the
dimension of each point (number of features). Thus, when applying SVM for text categorization of
large datasets, an efficient representation of the text can be of major importance.
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SVMs are well covered by numerous papers, books and tutorials and therefore we suppress
further descriptions here. Following Joachims (2001) and Dumais et al. (1998) we use a linear
SVM in all our experiments. The implementation we use is SVMlight of Joachims.7

3.4 Putting it All Together

For handlingm-class categorization problems (m > 2) we choose (for both the uni-labeled and
multi-labeled settings) a straightforward decomposition intom binary problems. Although this de-
composition is not the best for all datasets (see, e.g., Allwein et al., 2000; F¨urnkranz, 2002) it
allows for a direct comparison with the related results (which were all achieved using this decom-
position as well, see Section 2). Thus, for a categorization problem intom classes we constructm
binary classifiers such that each classifier is trained to distinguish one category from the rest. In
multi-labeledcategorization (see Section 5.1) experiments we construct for each category a “hard”
(threshold) binary SVM and each test document is considered by all binary classifiers. The subset
of categories attributed for this document is determined by the subset of classifiers that “accepted”
it. On the other hand, inuni-labeledexperiments we construct for each category aconfidence-rated
SVM that output for a (test) document a real confidence-rate based on the distance of the point to
the decision hyperplane. The (single) category of a test document is determined by the classifier
that outputs the largest confidence rate (this approach is sometimes called “max-win”).

A major goal of our work is to compare two categorization schemes based on the two rep-
resentations: the simple BOW representation together with Mutual Information feature selection
(called hereBOW+MI) and a representation based on word clusters computed via IB distributional
clustering (called hereIB ).

We first consider a BOW+MI uni-labeled categorization. Given a training set of documents in
m categories, for each categoryc, a binary confidence-rated linear SVM classifier is trained using
the following procedure: Thek most discriminating words are selected according to the Mutual
Information between the wordw and the categoryc (see Equation (1)). Then each training document
of categoryc is projected over the correspondingk “best” words and for each categoryc a dedicated
classifierhc is trained to separatec from the other categories. For categorizing a new (test) document
d, for each categoryc we projectd over thek most discriminating words of categoryc. Denoting a
projected documentd by dc, we computehc(dc) for all categoriesc. The category attributed ford
is argmaxchc(dc). For multi-labeled categorization the same procedure is applied except that now
we train, for each categoryc, hard (non-confidence-rated) classifiershc and the subset of categories
attributed for a test documentd is {c : hc(dc) = 1}.

The structure of the IB categorization scheme is similar (in both the uni-labeled and multi-
labeled settings) but now the representation of a document consists of vectors ofword cluster
counts corresponding to a cluster mapping (from words to cluster centroids) that is computed for
all categories simultaneously using the Information Bottleneck distributional clustering procedure
(Algorithm 1).

7. The SVMlight software can be downloaded at: http://svmlight.joachims.org/.
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4. Datasets

Three benchmark datasets - Reuters-21578, 20 Newsgroups and WebKB - were experimented with
in our application of feature selection for text categorization. In this section we describe these
datasets and the preprocessing that was applied to them.

4.1 Reuters-21578

The Reuters-21578 corpus contains 21578 articles taken from the Reuters newswire.8 Each article is
typically designated into one or more semantic categories such as “earn”, “trade”, “corn” etc., where
the total number of categories is 114. We used the ModApte split, which consists of a training set
of 7063 articles and a test set of 2742 articles.9

In both the training and test sets we preprocessed each article so that any additional information
except for the title and the body was removed. In addition, we lowered the case of letters. Following
Dumais et al. (1998) we generated distinct features for words that appear in article titles. In the
IB-based setup (see Section 3.4) we applied a filter on low-frequency words: we removed words
that appear inWlow f req articles or less, whereWlow f req is determined using cross-validation (see
Section 5.2). In the BOW+MI setup this filtering of low-frequency words is essentially not relevant
since these words are already filtered out by the Mutual Information feature selection index.

4.2 20 Newsgroups

The 20 Newsgroups (20NG) corpus contains 19997 articles taken from the Usenet newsgroups
collection.10 Each article is designated into one or more semantic categories and the total number
of categories is 20, all of them are of about the same size. Most of the articles have only one
semantic label, while about 4.5% of the articles have two or more labels. Following Schapire and
Singer (2000) we used the “Xrefs” field of the article headers to detect multi-labeled documents
and to remove duplications. We preprocessed each article so that any additional information except
for the subject and the body was removed. In addition, we filtered out lines that seemed to be part
of binary files sent as attachments or pseudo-graphical text delimiters. A line is considered to be a
“binary” (or a delimiter) if it is longer than 50 symbols and contains no blanks. Overall we removed
23057 such lines (where most of these occurrences appeared in a dozen of articles overall). Also,
we lowered the case of letters. As in the Reuters dataset, in the IB-based setup we applied a filter
on low-frequency words, using the parameterWlow f req determined via cross-validation.

4.3 WebKB: World Wide Knowledge Base

The World Wide Knowledge Base dataset (WebKB)11 is a collection of 8282 web pages obtained
from four academic domains. The WebKB was collected by Craven et al. (1998). The web pages
in the WebKB set are labeled using two different polychotomies. The first is according to topic
and the second is according to web domain. In our experiments we only considered the first poly-

8. Reuters-21578 can be found at: http://www.daviddlewis.com/resources/testcollections/reuters21578/.
9. Note that in these figures we count documents with at least one label. The original split contains 9603 training

documents and 3299 test documents where the additional articles have no labels. While in practice it may be possible
to utilize additional unlabeled documents for improving performance using semi-supervised learning algorithms (see,
e.g., El-Yaniv and Souroujon, 2001), in this work we simply discarded these documents.

10. The 20 Newsgroups can be found at: http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
11. WebKB can be found at: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.
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chotomy, which consists of 7 categories:course, department, faculty, project, staff, studentand
other. Following Nigam et al. (1998) we discarded the categoriesother,12 departmentandstaff.
The remaining part of the corpus contains 4199 documents in four categories. Table 3 specifies the
4 remaining categories and their sizes.

Category Number of articles Proportion (%)

course 930 22.1
faculty 1124 26.8
project 504 12.0
student 1641 39.1

Table 3: Some essential details of WebKB categories.

Since the web pages are in HTML format, they contain much non-textual information: HTML
tags, links etc. We did not filter this information because some of it is useful for categorization. For
instance, in some documents anchor-texts of URLs are the only discriminative textual information.
We did however filter out non-literals and lowered the case of letters. As in the other datasets,
in the IB-based setup we applied a filter on low-frequency words, using the parameterWlow f req

(determined via cross-validation).

5. Experimental Setup

This section presents our experimental model, starting with a short overview of the evaluation meth-
ods we used.

5.1 Optimality Criteria and Performance Evaluation

We are given a training setDtrain = {(d1, `1), . . . ,(dn, `n)} of labeled text documents, where each
documentdi belongs to a document setD and the label̀ i = `i(di) of di is within a predefined set
of categoriesC = {c1, . . . ,cm}. In themulti-labeledversion of text categorization, a document can
belong to several classes simultaneously. That is, bothh(d) and`(d) can be sets of categories rather
than single categories. In the case where each document has only a single label we say that the
categorization isuni-labeled.

We measure the empirical effectiveness of multi-labeled text categorization in terms of the clas-
sical information retrieval parameters of “precision” and “recall” (Baeza-Yates and Ribeiro-Neto,
1999). Consider a multi-labeled categorization problem withm classes,C = {c1, . . . ,cm}. Let h be
a classifier that was trained for this problem. For a documentd, let h(d)⊆ C be the set of categories
designated byh for d. Let `(d)⊆ C be true categories ofd. Let Dtest⊂D be atest setof “unseen”
documents that were not used in the construction ofh. For each categoryci , define the following
quantities:

TPi = ∑
d∈Dtest

I [ci ∈ `(d)∧ci ∈ h(d)] ,

TNi = ∑
d∈Dtest

I [ci ∈ `(d)∧ci 6∈ h(d)] ,

12. Note however thatother is the largest category in WebKB and consists about 45% of this set.
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FPi = ∑
d∈Dtest

I [ci 6∈ `(d)∧ci ∈ h(d)] ,

whereI [·] is the indicator function. For example,FPi (the “false positives” with respect toci) is the
number of documents categorized byh into ci whose true set of labels does not includeci , etc. For
each categoryci we now define the precisionPi = Pi(h) of h and the recallRi = Ri(h) with respect
to ci asPi = TPi

TPi+FPi
andRi = TPi

TPi+TNi
. The overallmicro-averaged precision P= P(h) andrecall

R= R(h) of h is a weighted average of the individual precisions and recalls (weighted with respect
to the sizes of the test set categories). That is,P = ∑m

i=1 TPi

∑m
i=1(TPi+FPi)

andR= ∑m
i=1 TPi

∑m
i=1(TPi+TNi)

. Due to the
natural tradeoff between precision and recall, the following two quantities are often used in order to
measure the performance of a classifier:

• F-measure:The harmonic mean of precision and recall; that isF = 2
1/P+1/R.

• Break-Even Point (BEP):A flexible classifier provides the means to control the tradeoff be-
tween precision and recall. For such classifiers, the value ofP (andR) satisfyingP = R is
called the break-even point (BEP). Since it is time consuming to evaluate the exact value of
the BEP it is customary to estimate it using the arithmetic mean ofP andR.

The above performance measures concern multi-labeled categorization. In a uni-labeled categoriza-
tion the accepted performance measure isaccuracy, defined to be the percentage of correctly labeled
documents inDtest. Specifically, assuming that bothh(d) and`(d) are singletons (i.e. uni-labeling),
the accuracyAcc(h) of h is Acc(h) = 1

|Dtest| ∑d∈Dtest
I [h(d) = `(d)]. Is it not hard to see that in this

case the accuracy equals the precision and recall (and the estimated break-even point).
Following Dumais et al. (1998) (and for comparison with this work), in our multi-labeled ex-

periments (Reuters and 20NG) we report onmicro-averaged break-even point (BEP)results. In
our uni-labeled experiments (20NG and WebKB) we report onaccuracy. Note that we experiment
with both uni-labeled and multi-labeled categorization of 20NG. Although this set is in general
multi-labeled, the proportion of multi-labeled articles in the dataset is rather small (about 4.5%) and
therefore a uni-labeled categorization of this set is also meaningful. To this end, we follow Joachims
(1997) and consider our (uni-labeled) categorization of a test document to be correct if the label we
assign to the document belongs to its true set of labels.

In order to better estimate the performance of our algorithms on test documents we use standard
cross-validation estimation in our experiments with 20NG and WebKB. However, when experi-
menting with Reuters, for compatibility with the experiments of Dumaiset al. we use its standard
ModApte split (i.e. without cross-validation). In particular, in both 20NG and WebKB we use 4-
fold cross-validation where we randomly and uniformly split each category into 4 folds and we took
three folds for training and one fold for testing. Note that this 3/4:1/4 split is proportional to the
training to test set size ratios of the ModApte split of Reuters. In the cross-validated experiments
we always report on the estimated average (over the 4 folds) performance (either BEP or accuracy),
estimated standard deviation and standard error of the mean.

5.2 Hyperparameter Optimization

A major issue when working with SVMs (and in fact with almost all inductive learning algorithms)
is parameter tuning. As noted earlier (in Section 3.3), we used linear SVMlight in our implemen-
tation. The only relevant parameters for the linear kernel we use areC (trade-off between training
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error and margin) andJ (cost-factor, by which training errors on positive examples outweigh er-
rors on negative examples). We optimize these parameters using avalidation setthat consists one
third of the three-fold training set.13 For each of these parameters we fix a small set of feasible
values14 and in general, we attempt to test performance (over the validation set) using all possible
combinations of parameter values over the feasible sets.

Note that tuning the parametersC andJ is different in the multi-labeled and uni-labeled settings.
In the multi-labeled setting we tune the parameters of each individual (binary) classifier indepen-
dently of the other classifiers. In the uni-labeled setting, parameter tuning is more complex. Since
we use the max-win decomposition, the categorization of a document is dependent on all the binary
classifiers involved. For instance, if all the classifiers except for one are perfect, this last bad classi-
fier can generate confidence rates that are maximal for all the documents, which results in extremely
poor performance. Therefore, a global tuning of all the binary classifiers is necessary. Neverthe-
less, in the case of the 20NG, where we have 20 binary classifiers, a global exhaustive search is too
time-consuming and, ideally, a clever search in this high dimensional parameter space should be
considered. Instead, we simply used the information we have on the 20NG categories to reduce the
size of the parameter space. Specifically, among the 20 categories of 20NG there are some highly
correlated ones and we split the list of the categories into 9 groups as in Table 4.15 For each group
the parameters are tuned together and independently of other groups. This way we achieve an ap-
proximately global parameter tuning also on the 20NG set. Note that the (much) smaller size of
WebKB (both number of categories and number of documents) allow for global parameter tuning
over the feasible parameter value sets without any need for approximation.

Group Content

1 (a) talk.religion.misc; (b) soc.religion.christian (c) alt.atheism
2 (a) rec.sport.hockey; (b) rec.sport.baseball
3 (a) talk.politics.mideast
4 (a) sci.med; (b) talk.politics.guns; (c) talk.politics.misc
5 (a) rec.autos; (b) rec.motorcycles; (c) sci.space
6 (a) comp.os.ms-windows.misc; (b) comp.graphics; (c) comp.windows.x
7 (a) sci.electronics; (b) comp.sys.mac.hardware; (c) comp.sys.ibm.pc.hardware
8 (a) sci.crypt
9 (a) misc.forsale

Table 4: A split of the 20NG’s categories into thematic groups.

In IB categorization also the parameterWlow f req (see Section 4), which determines a filter on
low-frequency words, has a significant impact on categorization quality. Therefore, in IB catego-
rization we search for both the SVM parameters andWlow f req. To reduce the time complexity we
employ the following simple search heuristics. We first fix random values ofC andJ and then, using

13. Dumais et al. (1998) also use a 1/3 random subset of the training set for validated parameter tuning.
14. Specifically, for theC parameter the feasible set is{10−4,10−3,10−2,10−1} and forJ it is {0.5,1,2, . . . ,10}.
15. It is important to note that an almost identical split can be computed in a completely unsupervised manner using the

Multivariate Information Bottleneck (see Friedman et al., 2001, for further details).
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the validation set, we optimizeWlow f req.16 After determiningWlow f req we tune bothC andJ as
described above.17

5.3 Fair vs. Unfair Parameter Tuning

In our experiments with the BOW+MI and IB categorizers we sometimes performunfair parameter
tuning in which we tune the SVM parameters over thetestset (rather than thevalidation set). If
a categorizerA achieves better performance than a categorizerB while B’s parameters were tuned
unfairly (andA’s parameters were tuned fairly) then we can get stronger evidence thatA performs
better thanB. In our experiments we sometimes use this technique to accentuate differences between
two categorizers.

6. Categorization Results

We compare text categorization results of the IB and BOW+MI settings. For compatibility with the
original BOW+MI setting of Dumais et al. (1998), where the number of best discriminating words
k is set to 300, we report on results withk = 300 for both settings. In addition, we show BOW+MI
results withk = 15,000, which is an example for a big value ofk that led to good categorization
results in the tests we performed. We also report on BOW results without applying MI feature
selection.

6.1 Multi-Labeled Categorization

Table 5 summarizes the multi-labeled categorization results obtained by the two categorization
schemes (BOW+MI and IB) over Reuters (10 largest categories) and 20NG datasets. Note that
the 92.0% BEP result for BOW+MI over Reuters was established by Dumais et al. (1998).18 To the
best of our knowledge, the 88.6% BEP we obtain on 20NG is the first reported result of a multi-
labeled categorization of this dataset. Previous attempts at multi-labeled categorization of this set
were performed by Schapire and Singer (2000), but no overall result on the entire set was reported.

On 20NG the advantage of the IB categorizer over BOW+MI is striking whenk = 300 words
(andk = 300 word clusters) are used. Note that the 77.7% BEP of BOW+MI is obtained using
unfair parameter tuning (see Section 5.3). However, this difference does not sustain when we use
k= 15,000 words. Using this rather large number of words the BOW+MI performance significantly
increases to 86.3% (again, using unfair parameter tuning), which taking into account the statistical
deviations is similar to the IB BEP performance. The BOW+MI results that are achieved with fair
parameter tuning show an increase in the gap between the performance of the two methods. Never-
theless, the IB categorizer achieves this BEP performance using only 300 features (word clusters),
almost two order of magnitude smaller than 15,000. Thus, with respect to 20NG, the IB categorizer
outperforms the BOW+MI categorizer both in BEP performance and in representation efficiency.
We also tried other values of thek parameter, where 300< k� 15,000 andk > 15,000. We found

16. The set of feasibleWlow f req values we use is{0,2,4,6,8}.
17. The “optimal” determined value ofWlow f req for Reuters is 4, for WebKB (across all folds) it is 8 and for 20NG it

is 0. The number of distinct words after removing low-frequency words is: 9,953 for Reuters (Wlow f req = 4), about
110,000 for 20NG (Wlow f req = 0) and about 7,000 for WebKB (Wlow f req = 8), depending on the fold.

18. This result was achieved using binary BOW representation, see Section 2. We replicated Dumaiset al.’s experiment
and in fact obtained a slightly higher BEP result of 92.3%.
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Categorizer Reuters (BEP) 20NG (BEP)

BOW+MI 92.0 76.5±0.4 (0.25)
k = 300 obtained by Dumais et al. (1998)77.7±0.5 (0.31) unfair
BOW+MI 92.0 85.6±0.6 (0.35)
k = 15000 86.3±0.5 (0.27) unfair
BOW 89.7 86.5±0.4 (0.26) unfair
IB 91.2 88.6±0.3 (0.21)
k = 300 92.6 unfair

Table 5: Multi-labeled categorization BEP results for 20NG and Reuters.k is the number of se-
lected words or word-clusters. All 20NG results are averages of 4-fold cross-validation.
Standard deviations are given after the “±” symbol and standard errors of the means are
given in brackets. “Unfair” indicates unfair parameter tuning over the test sets (see Sec-
tion 5.3).

that the learning curve, as a function ofk, is monotone increasing until it reaches a plateau around
k = 15,000.

We repeat the same experiment over the Reuters dataset but there we obtain different results.
Now the IB categorizer lose its BEP advantage and achieves a 91.2% BEP,19 a slightly inferior
(but quite similar) performance to the BOW+MI categorizer (as reported by Dumais et al., 1998).
Note that the BOW+MI categorizer does not benefit from increasing the number of features up to
k = 15,000. Furthermore, using all features led to a decrease of 2% in BEP.

Categorizer WebKB (Accuracy) 20NG (Accuracy)

BOW+MI 92.6±0.3 (0.20) 84.7±0.7 (0.41)
k = 300 85.5±0.7 (0.45) unfair
BOW+MI 92.4±0.5 (0.32) 90.2±0.3 (0.17)
k = 15000 90.9±0.2 (0.12) unfair
BOW 92.3±0.5 (0.40) 91.2±0.1 (0.08) unfair
IB 89.5±0.7 (0.41) 91.3±0.4 (0.24)
k = 300 91.0±0.5 (0.32) unfair

Table 6: Uni-labeled categorization accuracy for 20NG and WebKB.k is the number of selected
words or word-clusters. All accuracies are averages of 4-fold cross-validation. Standard
deviations are given after the “±” symbol and standard errors of the means are given in
brackets. “Unfair” indicates unfair parameter tuning over the test sets (see Section 5.3).

19. Using unfair parameter tuning the IB categorizer achieves 92.6% BEP.
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6.2 Uni-Labeled Categorization

We also perform uni-labeled categorization experiments using the BOW+MI and IB categorizers
over 20NG and WebKB. The final accuracy results are shown in Table 6. These results appear to be
qualitatively similar to the multi-labeled results presented above with WebKB replacing Reuters.
Here again, over the 20NG set, the IB categorizer is showing a clear accuracy advantage over
BOW+MI with k = 300 and this advantage is diminished if we takek = 15,000. On the other
hand, we observe a comparable (and similar) accuracy of both categorizers over WebKB, and as it
is with Reuters, here again the BOW+MI categorizer does not benefit from increasing the feature
set size.

The use ofk = 300 word clusters in the IB categorizer is not necessarily optimal. We also
performed this categorization experiment with different values ofk ranging from 100 to 1000. The
categorization accuracy slightly increases whenk moves from 100 to 200, and does not significantly
change whenk > 200.

7. Discussion: Corpora Complexity vs. Representation Efficiency

The categorization results reported above show that the performance of the BOW+MI categorizer
and the IB categorizer is sensitive to the dataset being categorized. What makes the performance of
these two categorizers different over different datasets? Why does the more sophisticated IB cate-
gorizer outperform the BOW+MI categorizer (with either higher accuracy or better representation
efficiency) over 20NG but not over Reuters and WebKB? In this section we study this question and
attempt to identify differences between these corpora that can account for this behavior.

One possible approach to quantify the complexity of a corpus with respect to a categorization
system is to observe and analyze learning curves plotting the performance of the categorizer as a
function of the number of words selected for representing each category. Before presenting such
learning curves for the three corpora, we focus on the extreme case where we categorize each
of the corpora using only thethree top words per category (where top-scores are measured using
the Mutual Information of words with respect to categories). Tables 7, 8 and 9 specify (for each
corpus) a list of the top three words for each category, together with the performance achieved by
the BOW+MI (binary) classifier of the category. For comparison, we also provide the corresponding
performance of BOW+MI using the 15,000 top words (i.e. potentially all the significant words in the
corpus). For instance, observing Table 7, computed for Reuters, we see that based only on the words
“vs”, “cts” and “loss” it is possible to achieve 93.5% BEP when categorizing the categoryearn. We
note that the word “vs” appears in 87% of the articles of the categoryearn (i.e., in 914 articles
among total 1044 of this category). This word appears in only 15 non-earn articles in the test set
and therefore “vs” can, by itself, categorizeearnwith very high precision.20 This phenomenon was
already noticed by Joachims (1997), who noted that a classifier built on only one word (“wheat”)
can lead to extremely high accuracy when distinguishing between the Reuters categorywheatand
the other categories (within a uni-labeled setting).21 The difference between the 20NG and the two
other corpora is striking when considering the relative improvement in categorization quality when
increasing the feature set up to 15,000 words. While one can dramatically improve categorization

20. In the training set the word “vs” appears in 1900 of the 2709 earn articles (70.1%) and only in 14 of the 4354 non-earn
articles (0.3%).

21. When using only one word per category, we observed a 74.6% BEP when categorizing Reuters (10 largest categories),
66.3% accuracy when categorizing WebKB and 34.6% accuracy when categorizing 20NG.
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of 20NG by over 150% with many more words, we observe a relative improvement of only about
15% and 26% in the case of Reuters and WebKB, respectively.
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Figure 1: Learning curves (BEP or accuracy vs. number of words) for the datasets: Reuters-21578
(multi-labeled, BEP), 20NG (uni-labeled, accuracy) and WebKB (uni-labeled, accuracy)
over the MI-sorted top 10 words (a) and the top 300 words (b) using the BOW+MI cate-
gorizer.

Category 1st word 2nd word 3rd word BEP on BEP on Relative
3 words 15000 words Improvement

earn vs+ cts+ loss+ 93.5% 98.6% 5.4%
acq shares+ vs− Inc+ 76.3% 95.2% 24.7%
money-fx dollar+ vs− exchange+ 53.8% 80.5% 49.6%
grain wheat+ tonnes+ grain+ 77.8% 88.9% 14.2%
crude oil+ bpd+ OPEC+ 73.2% 86.2% 17.4%
trade trade+ vs− cts− 67.1% 76.5% 14.0%
interest rates+ rate+ vs− 57.0% 76.2% 33.6%
ship ships+ vs− strike+ 64.1% 75.4% 17.6%
wheat wheat+ tonnes+ WHEAT+ 87.8% 82.6% -5.9%
corn corn+ tonnes+ vs− 70.3% 83.7% 19.0%

Average 79.9% 92.0% 15.1%

Table 7: Reuters: Three best words (in terms of Mutual Information) and their categorization BEP
rate of the 10 largest categories, “+” near a word means that the appearance of the word
predicts the corresponding category, “−” means that the absence of the word predicts the
category. Words in upper-case are words that appeared in article titles (see Section 4.1).
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Category 1st word 2nd word 3rd word Accuracy on Accuracy on Relative
3 words 15000 words Improvement

course courses course homework 79.0% 95.7% 21.1%
faculty professor cite pp 70.5% 89.8% 27.3%
project projects umd berkeley 53.2% 80.8% 51.8%
student com uci homes 78.3% 95.9% 22.4%

Average 73.3% 92.4% 26.0%

Table 8: WebKB: Three best words (in terms of Mutual Information) and their categorization ac-
curacy rate of the 4 representative categories. All the listed words contribute by their
appearance, rather than absence.

Category 1st word 2nd word 3rd word Accuracy Accuracy Relative
on 3 on 15000 Improvement

words words

alt.atheism atheism atheists morality 48.7% 84.8% 74.1%
comp.graphics image jpeg graphics 40.5% 83.1% 105.1%
comp.os.ms- windows m o 60.9% 84.7% 39.0%
windows.misc
comp.sys.ibm. scsi drive ide 13.8% 76.6% 455.0%
pc.hardware
comp.sys.mac. mac apple centris 61.0% 86.7% 42.1%
hardware
comp.windows.x window server motif 46.6% 86.7% 86.0%
misc.forsale 00 sale shipping 63.4% 87.3% 37.6%
rec.autos car cars engine 62.0% 89.6% 44.5%
rec.motorcycles bike dod ride 77.3% 94.0% 21.6%
rec.sport.baseball baseball game year 38.2% 95.0% 148.6%
rec.sport.hockey hockey game team 67.7% 97.2% 43.5%
sci.crypt key encryption clipper 76.7% 95.4% 24.3%
sci.electronics circuit wire wiring 15.2% 85.3% 461.1%
sci.med cancer medical msg 26.0% 92.4% 255.3%
sci.space space nasa orbit 62.5% 94.5% 51.2%
soc.religion.christian god church sin 50.2% 91.7% 82.6%
talk.politics.guns gun guns firearms 41.5% 87.5% 110.8%
talk.politics.mideast israel armenian turkish 54.8% 94.1% 71.7%
talk.politics.misc cramer president ortilink 23.0% 67.7% 194.3%
talk.religion.misc jesus god jehovah 6.6% 53.8% 715.1%

Average 46.83% 86.40% 153.23%

Table 9: 20NG: Three best words (in terms of Mutual Information) and their categorization accu-
racy rate (uni-labeled setting). All the listed words contribute by their appearance, rather
than absence.

In Figure 1 we present, for each dataset, a learning curve plotting the obtained performance of
the BOW+MI categorizer as a function of the numberk of selected words.22 As can be seen, the two

22. In the case of Reuters and 20NG the performance is measured in terms of BEP and in the case of WebKB in terms of
accuracy.
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curves of both Reuters and WebKB are very similar and almost reach a plateau withk = 50 words
(that were chosen using the greedy Mutual Information index). This indicates that other words
do not contribute much to categorization. But the learning curve of 20NG continues to rise when
0 < k < 300, and still exhibits a rising slope withk = 300 words.

The above findings indicate on a systematic difference between the categorization of the 20NG
dataset on the one hand, and of the Reuters and WebKB datasets, on the other hand. We identify
another interesting difference between the corpora. This difference is related to the hyper-parameter
Wlow f req (see Section 4). The bottom line is that in the case of 20NG IB categorization improves
whenWlow f req decreaseswhile in the case of Reuters and WebKB it improves whenWlow f req

increases. In other words, more words and even the most infrequent words can be useful and
improve the (IB) categorization of 20NG. On the other hand, such rare words do add noise in the
(IB) categorization of Reuters and WebKB. Figure 2 depicts the performance of the IB classifier on
the three corpora as a function ofWlow f req. Note again that this opposite sensitivity to rare words is
observed with respect to the IB scheme and the previous discussion concerns the BOW+MI scheme.
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Figure 2: Performance of the IB categorizer as a function of theWlow f req parameter (that specifies
the threshold of the low frequency word filter: words appearing in less thanWlow f req

articles are removed); uni-labeled categorization of WebKB and 20NG (accuracy), multi-
labeled categorization of Reuters (BEP). Note thatWlow f req = 0 corresponds to the case
where this filter is disabled. The number of word clusters in all cases isk = 300.

8. Computational Efforts

We performed all our experiments using a 600MHz 2G RAM dual processor Pentium III PC oper-
ated by Windows 2000. The IB clustering software, preprocessed datasets and application scripts
can be found at:

http://www.cs.technion.ac.il/∼ronb
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The computational bottlenecks were mainly experienced over 20NG, which is substantially larger
than Reuters and WebKB.

Let us first consider the multi-labeled experiments with 20NG. When running the BOW+MI
categorizer, the computational bottleneck was the SVM training, for which a single run (one of the
4 cross-validation folds, including both training and testing) could take a few hours, depending on
the parameter values. In general, the smaller the parametersC andJ are, the faster the SVM training
is.23

As for the IB categorizer, the SVM training process was faster when the input vectors consisted
of word clusters. However, the clustering itself could take up to one hour for each fold of the entire
20NG set, and required substantial amount of memory (up to 1G RAM). The overall training and
testing time over the entire 20NG in the multi-labeled setting was about 16 hours (4 hours for each
of the 4 folds).

The computational bottleneck when running uni-labeled experiments was the SVM parameter
tuning. It required a repetition for each combination of the parameters and individual classifiers
(see Section 5.2). Overall the experiments with the IB categorizer took about 45 hours of CPU time,
while the BOW-MI categorizer required about 96 hours (i.e. 4 days).

The experiments with the relatively small WebKB corpus were accordingly less time-consuming.
In particular, the experiments with the SVM+MI categorizer required 7 hours of CPU time and those
with the IB categorizer, about 8 hours. Thus, when comparing these times with the experiments on
20NG we see that the IB categorizer is less time-consuming than the BOW+MI categorizer (based
on 15000 words) but the clustering algorithm requires larger memory. On Reuters the experiments
ran even faster, because there was no need to apply cross-validation estimation.

9. Concluding Remarks

In this study we have provided further evidence for the effectiveness of a sophisticated technique for
document representation using distributional clustering of words. Previous studies of distributional
clustering of words remained somewhat inconclusive because the overall absolute categorization
performance were not state-of-the-art, probably due to the weak classifiers they employed (to the
best of our knowledge, in all pervious studies of distributional clustering as a representation method
for supervised text categorization, the classifier used was Naive Bayes).

We show that when Information Bottleneck distributional clustering is combined with an SVM
classifier, it yields high performance (uni-labeled and multi-labeled) categorization of the three
benchmark datasets. In particular, on the 20NG dataset, with respect to either multi-labeled or uni-
labeled categorization, we obtain either accuracy (BEP) or representation efficiency advantages over
BOW when the categorization is based on SVM. This result indicates that sophisticated document
representations can significantly outperform the standard BOW representation and achieve state-of-
the-art performance.

Nevertheless, we found no accuracy (BEP) or representation efficiency advantage to this feature
generation technique when categorizing the Reuters or WebKB corpora. Our study of the three cor-
pora shows structural differences between them. Specifically, we observe that Reuters and WebKB
can be categorized with close to “optimal” performance using a small set of words, where the ad-
dition of many thousands more words provides no significant improvement. On the other hand, the
categorization of 20NG can significantly benefit from the use of a large vocabulary. This indicates

23. SVMlight and its parameters are described by Joachims (1998a).
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that the “complexity” of the 20NG corpus is in some sense higher than that of Reuters and WebKB.
In addition, we see that the IB representation can benefit from including even the most infrequent
words when it is applied with the 20NG corpus. On the other hand, such infrequent words do not af-
fect or even degrade the performance of the IB categorizer when applied to the Reuters and WebKB
corpora.

Based on our experience with the above corpora we note that when testing complex feature
selection or generation techniques for text categorization, one should avoid making definitive con-
clusions based only on “low-complexity” corpora such as Reuters and WebKB. It seems that so-
phisticated representation methods cannot outperform BOW on such corpora.

Let us conclude with some questions and directions for future research. Given a pool of two or
more representation techniques and given a corpus, an interesting question is whether it is possible
to combine them in a way that will be competitive with or even outperform the best technique in the
pool. A straightforward approach would be to perform cross-validated model selection. However,
this approach will be at best as good as the best technique in the pool. Another possibility is to try to
combine the representation techniques by devising a specialized categorizer for each representation
and then use ensemble techniques to aggregate decisions. Other sophisticated approaches such as
“co-training” (see, e.g., Blum and Mitchell, 1998) can also be considered.

Our application of the IB distributional clustering of words employed document class labels
but generated aglobal clustering for all categories. Another possibility to consider is to generate
specialized clustering for each (binary) classifier. Another interesting possibility to try is to combine
clustering ofn-grams, with 16 n 6 N for some smallN.

Another interesting question that we did not explore concerns the behavior of IB and BOW
representations when using feature sets of small cardinality (e.g.k = 10). It is expected that at least
in “complex” datasets like 20NG, there should be an advantage to the IB representation also in this
case.

The BOW+MI categorization employed Mutual Information feature selection, where the num-
ber k of features (words) was identical for all categories. It would be interesting to consider a
specializedk for each category. Although it might be hard to identify good set of vocabularies,
this approach may lead to somewhat better categorization and is likely to generate more efficient
representations.

In all our experiments we used the simple-minded one-against-all decomposition technique. It
would be interesting to study other decompositions (perhaps, using error correcting output coding
approaches). The inter-relation between feature selection/generation and the particular decomposi-
tion is of particular importance and may improve text categorization performance.

We computed our word clustering using the original top-down (soft) clustering IB implemen-
tation of Tishby et al. (1999). It would be interesting to explore the power of more recent IB
implementations in this context. Specifically, the IB clustering methods described by El-Yaniv and
Souroujon (2001) and Slonim et al. (2002) may yield better clustering in the sense that they tend to
better approximate the optimal IB objective.
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