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Abstract

Text categorization can be viewed asaprocessof catego~ search, in
which one or more categories for a testdocument are searchedfor by
using given training documents with known categories. In this paper
a cluster-based search with a probabilistic clustering algorithm
is proposed and evaluated on two data sets. The “efficiency,
effectiveness, and noise tolerance of this search strategy were

confirmed to be better than those of a full search, a category-based

search, and a cluster-based search with nonprobabilistic clustering.

1 introduction

Text categorization cars be viewed as a process of category search:
given training documents with known categories, a program
searches for one or more categories that a test document is as-
sumed to have. The simplest strategy would be to search the
K-nearest training documents to the test document and use the
categories assigned to those training documents. Ilk is known as

MBR (Memory Based Reasoning) [Stantill and Waltz, 1986] or
A“-NN (h’-Nearest Neighbor classifiers) [Weiss and Kulikowski,

199o]. Although this full search offers promising performance
in text categorization [Masand et af., 1992], itrequires a large

amount of computational power for calculating a measure of the
sirnhity between a test document and every training document

and for sorting the similarities.

One alternative strategy is a clusrer-based search [Salton and
McGill, 1983], where training documents are partitioned into sev-
eral clusters before searching and a test document is compared with

each cluster rather than with each document. Cluster-based searches

have been used in text retrieval to improve both the eficiency and

the ejj%ecliverress of full serwch [Jardine and Van Rijsbergen, 1971,
van Rij sbergen, 1974, Crof4 1980], but their significantly greater

advantage of the effectiveness has not been verified. Since the
effectiveness of this kind of searching depends on the predictive

performance of constructed clusters, selecting a better clustering
algorithm is crucial. The most popular algorithm in text re-

trieval is the single-link method or Wind’s method that use the
measure of distance between two objects and merge the closer
ones [Anderberg, 1973, Cormac~ 1971, Griffiths et al., 1984,
Wlllet~ 1988]. In text categorization, the simplest version of clus-
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tering has been used: all the training documents that are assigned
the same category are grouped into a cluster as the representation
of the category. We refer this strategy as caregory-based search.

In this paper we propose a probabilistic clustering algorithm
called Hierarchical Bayesian Clustering (HBC] and use the aJ-
gorithm to construct a set of clusters for cluster-based search.

The searching platform we focus on is the probabilistic model

of text categorization that searches the most likely clusters to
which an unseen document is classified [Croft, 1981, Fuhr, 1989,

Iwayarna and Tokunaga, 1994, Kwok, 1990, Lewis, 1992]. Since

HBC constructs the most likely set of clusters that contains the the

given training documents, HBC gives exactly the same criterion

both in constructing and in searching clusters. For this reason,
our framework is expected to offer a better performance than does
a framework that uses a probabilistic model in searching clusters
but uses a nonprobabilistic model in constructing clusters [Croft,
1980].

In the experiments reported here we compared the four category
serwch strategies: full search, category-based search, cluster-based

search with nonprobabilistic clustering, and cluster-based search
with probabilistic clustering. The two data sets we used are rich in

variety: one was Japanese dictionary data (calfed Gersdai ybgo no

kisotisiki), which is well organized by editors; and the other was a

collection of English news stories (from the Wall Street Journal),
which is a real-world data set but includes much noise. The results

suggest that the most balanced strategy from the standpoints of

efficiency, effectiveness, and noise tolerance is the cluster-based
search with probabilistic clustering.

2 Category Search Strategies

The category search strategy in probabilistic text categorization

can be broken down into tie following four steps:

1. bSShIICt ClLISb3’S c = {CI, C2, ..., CNC } from the given

training documents D = {dl, dz, . . . . dN~ }.

2. Calculate the posterior probability P(c, ld~e,e) for a test
document dte, ~ and every cluster Ct.

3. Sort the posterior probabilities and extract the A’-neaest
training documents.

4. Assign to the test document categories based on the extracted

K-nearest documents.

The differences between category search strategies stem from
the difference of clustering algorithnw used in step 1. For full search

(MBR or A’-NN), no clustering algorithm is used there. It follows
that each training document belongs to a singleton cluster whose
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category search strategy clustering algorithm number of time
clusters NC complexity

full search --- N ---

category-based search grouping documents according to nu~ber of O(ND)

the assigned categories categories

cluster-based search with single-link method, < ND O(N~)

nonprobabilistic clustering Ward’s method, etc.

cluster-based search with Hierarchical Bayesiarr Clustering < ND O(N;)

mobabilistic clusterinrz etc.

Table 1: Clustering algorithms in category search strategies.

only member is the document itself. For category-based search,

all the training documents having the same category are grouped
into a cluster. The complexity of thk grouping is O(IVD ) where
ND is the number of training documents. For cluster-based search
with nonprobabilistic clustering, a clustering algorithm such as the

single-link method or Ward’s method is used. These algorithms are

based on the Euclid distance between two objects [Anderberg, 1973,
Cormack, 1971] and the complexity of constructing clusters is
O(N~). For cluster-based search with probabilistic clustering,
a clustering algorithm based on probability theory is used. In
this paper we propose the use of an algorithm catled Hierarchical
Bayesian Clustering (HBC) because it uses the same criterion in

constructing and searching clusters. The complexity of HBC is also
O(IY~). Table 1 summarizes the four strategies.

Steps 2 and 3 search the h--nearest training documents to
a test document dt.,t using the clusters constructed at step 1.

The measure of nearness is the posterior probability P(ci ]dtes t),

the probability that the test document dt,,t is classified into a

cluster c,. Tbe training documents in the nearest clusters become
the nearest training documents.] Although marry methods for
calculating the posterior probability have been proposed [Robertson
and Sparck Jones, 1976, Kwok, 1990, Fubr, 1989], we use the

simple formula proposed in [Iwayama and Tokunaga, 1994]. 2
We first consider an event “T = t,” meaning that a randomly
selected term T from the document dt,sl is equal tot. Conditioning

P(c, Idte=t) for each possible event gives

P(c,ldte*t)=~P(c,ldtest, T=t,P(T=tldtest,. (1,

t

Assuming conditioned independence between c, and d, given T =

t,3 and applying Bayes’ theorem, we obtain

P(c,ld,.,t) = P(c, ) x

P(T = tic, )P(T = tldtest)

P(T = t)
. (2)

t

Probabilities on the right-hand side of this equation are estimated
as follows:

c

b

●

P(T = fldte,t): relative frequency of a term t in a test
document CZt=,,.

P(T = tic,): relative frequency of a term t in a cluster c,.

P(T = t): relative frequency of a term t in the entire set of
training documents.

1Thk means that the number of the nearest training documents in cluster-bawd
search may not b-s continuous.

2@=~ihtive and ~xwrim”~l ~omp~isons of probabilistic nrodek ~e di~~~

in [Iwayama and Tokuaaga, 1994]

3More precisely, P(c,ldi=.i, T = t) = P(c, IT = t) which assumes that if we

know T = t, information for c, is independent of that ford. Tlis assumption seems
valid because T = t is a kind of representation of d.

c P(ct ): relative frequency of documents that belong to c, in

the entire set of training documents.

In this paper we lirnked terms to nouns.
The efficiency of finding the K-nearest training documents

depends on the number of clusters NC constructed in step 1. Since
the complexity of this search is O(NC log Nc ) in the worst case,4

a smaller set of clusters is preferable from the standpoint of the
efficiency.

In step 4, each document dt~~,~ in tbe ~-nertrest training
documents votes on each of the categories assigned to dtra,~. Tbe
weight of the voting is log P({dt,a, ~ } Idt., t ), that is, the logarithm
of the probability that dtest is categorized into the cluster {dtrcain }
whose only member is dt,a,n. Tbk voting results in the category

ranking for each test document. In a category-based search, it is

usual to make thk ranking by calculating the posterior probabilities

P(c, Idt,.t) for every cluster (i.e., category) c, directly, not using

the voting strategy. According to the category rankkg, one or
more categories are assigned to each test document using one of

the following category assignment strategies.

[k-per-dot]
Assign the top k categories to each test document.

[probability tbresbold]

Assign all the categories above a user-defined threshold,

[proportional assignment]
Each category is assigned to its top scoring documents in
proportion to the number of times the category was assigned

in the training documents [Lewis, 1992]. For example, a
category assigned to 270 of the training documents would

be assigned to the top scoring 0.2% of the test documents if
the proportionality constant was 0.1, or to 10% of the test
documents if the proportionality constant was 5.0.

Several experiments confirm the advantage of proportional

assignment over the other assignment strategies [Lewis, 1992,

Iwayama and Tokunaga, 1994]. Note however that proportional
assignment requires batcb procssing of test documents; it has to
wait until the sufficient number of test documents are gathered.
When real-time response is necessary, a k-per-dot or probability
threshold strategy should be used.

3 Hierarchical Bayesian Clustering

In cluster-based search with probabilistic clustering, we propose
that Hierarchical Bayesian Clustering (HBC) [Iwayama and Toku-
naga, 1995] be used. Given training documents D, HBC constructs

the set of clusters C that has the locally maximum value of the
posterior probability P(CID). This is a general form of well-known

4Using inverted tile [Salton and McGII1, 1983] can reduce the number of wmpaf-

isons 10 find the K-nearest documents.
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Input

D={dl, d2,..., d~ }: a collection of N data;

Initialize

CO = {cl, CZ, . . . . c~}: asetof clusters;

c,={d, }forl SiSN

calculate SC(C, ) for 1 < i s N

calculate SC(C, u CJ) for 1 s i < j < N

fors=lto N–ldo
SC(C=Uc )

(C=, Cu) = mg maxc=)cy SC(C=WC;VJ

c, = c.-, – {C=, cv} +{C= Ucy}

calculate SC(C= u c=) for all c= E C, where z # x

Function SC(c)

return ~dcc P(cld)

Figure 1: Hierarchical Bayesian Clustering.

Maximum LAelihood estimation, estimating the most likely model
(i.e., set of clusters) from given training data. One advantage of

using HBC in the framework of probabilistic text categorization is
that the function to be maximized in constructing clusters is exactly
the same as the function used in searching for the nearest clusters.

Like most agglomerative clustering algorithms [Cormac~ 1971,
Anderberg, 1973, Griffiths et al., 1984, Willett, 1988], HBC
constructs a cluster hierarchy (also called dendrogram) from bottom

to top by merging two clusters at a time. At the beginning (the
bottom level in a dendrogram), each document belongs to a cluster

whose only member is the document itself. For every pair of

clusters, HBC calculates the increase of the posterior probability

after merging the pair and selects the pair that results in the

maximum increase. To see the details of this merge process,

consider a merge step k + 1 (O ~ k ~ N – 1). By the step k + 1,
a data collection D = {d,, d2, . . . . dN~ } has been partitioned into

a set of clusters Ck = {cI, CZ,.. .}. That is, each datum d, G D
belongs to a chrster CJ C ck. me overall posterior probability at
this point becomes

P(C,ID) = ~ ~ P(cjldi). (3)

C, eC~ AecJ

This formula defines the overall probability that every training
document is classified into the cluster that includes the training

document. Each P(cI Id, ) is calculated using Eq. (2). When the
algorithm would merge tWOCh3S&S Cz, Cy e c,, he Sd Of ChISkXS

c, k updated as fOllOWS:

C~+l =C, –{ CZ, CY}+{CZUCY}. (4)

After the merge, the posterior probability is inductively updated as

follows:

~(C,+~lD) = P(CK ID)

~d,~C=LICv P(CZ u CyId, )
(5)

~d, CC= ‘(CZ!~I) ~d,ccy ~(Cy[d; ) “

Note that this updating is local and can be done efficiently since
all we have to recalculate from the previous step is the probability
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Figure 2: Example of a dendrograrn.

for the merged new cluster. For a collection of N documents,
merge takes place N -1 times and the last merge produces a single

cluster containing the entire document set. Figure 1 shows the HBC

algorithm and Figure 2 is an example of a constructed dendrogmm.

In appendix, we also show a simple program of HBC written in
Perl.

For a cluster-based search, we extract a set of clusters by
cutting a dendrogram at a certain merge step. Figure 2 shows an
example of the set CIS = {cl, c5, c9, CIS,CU} that is extracted just
after the merge step 13. There are several possible standards for
selecting the best set of clusters. The one used in this paper is
to select the set ck that yields the maximum posterior probability

P(C, ID) over all the merge steps. Another strategy is not to cut a

dendrogram but to traverse over the dendrograrn on request of each

test document to dynamically search for the best clusters for that test
document [Jardine and Van Rijsbergen, 1971, van Rijsbergen, 1974,

Crof4 1980, Griffiths et al., 1986].

4 Experiments

4.1 Data and Preprocessing

The following two collections of documents were used in our
experiments.

Gendai ybgo no K~otisiki (GK):

A dictionay of contemporary words in Japanese [Jiyd-

kokuminsy% 1992]. It contains 18,476 word entries, each of

which is classified into one of 149 categories. The length
of documents explaining each entry varies from 13 to 1,938

KANJI characters and averages 287 characters. To eliiinate
the effects of noise, we excluded the entries that include less
than 100 terms (nouns) and the categories that include less
than 20 entries. The remaining 1,072 entries were classified

into 39 categories.

Wall Street Journal (WSJ):

A collection of news stories in English [Llberman, 1991]. We

extracted 12,380 articles from ‘89/7/25 to ‘89/11/2. Each of

the articles is assigned some of 78 categories. After excluding

articles that had no category, each of the remaining 8,907
articles had 1.94 categories on the average.

Besides the difference in the languages, a major difference
between GK and WSJ is that between the processes used for

collecting the data. For GK one editor was responsible for each
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category, and this editor not only selected the entries that should
be contained in the category but also wrote all of the entries. This
contributed to the uniformity of documents within each categoxy.

WSJ, on the other hand, not only contained a variety of news stories

written by various writers, but categories were later assigned by

experts who were not these writers. We used WSJ as a real-world

data set containing more noise than did GK, which was used as an
well-defined experimental data set.

For preprocessing of documents, we fwst tagged all the doc-
uments by using JUMAN [Matsumoto et al., 1994] for GK, and

Xerox Part-of-Speech Tagger [Cutting and Pedersen, 1993] for
WSJ. Ispell [Wlllisson, 1991] was used for the analysis of word

stemming in WSJ. GK did not need such a program because there
is no inflection of nouns in Japanese. From tagged documents we

extracted the root words of nouns as terms and calculated their

relative frequencies in order to estimate the probabHities. We dld

not reduce the number of terms by using stop-word list.
To divide each data set into two sets, one for training and the

other for evaluation, different methods were used according to the
size of the data set. Since GK contains a relatively small number

of entries, a resampling technique of 4-fold cross-validation was
used. For WSJ, all stories that appeared from ‘89/7/25 to ‘89/9/29
went into a training set of 5,820 documents, and all stories from
‘8911012 to ‘89/1 1/2 went into a test set of 3,087 documents.

4.2 Evaluation

We evaluated the performance of the following four category search

strategies in the task of probabilistic text categorization.

[full search]

[category-based search]

In case of WSJ, since a document may have several cat-
egories, there is overlapping between clusters; that is, the

same document might appear within several clusters.

[cluster-based search with nonprobabiliitic clustering]
We used Ward’s method for nonprobabilistic clustering algo-

rithm because several studies indicate that ita performance is
better than that of other methods [E1-Hamdouchi and Willet~

1986, Griffiths e~al., 1986]. ‘fbe TF.IDF [Salton and Yang,
1973] is used for the term weighting.

[cluster-based search with probabilktic clustering]
We used HBC as the probabilistic clustering algorithm.

The number K of the nearest training documents was set to
various values except for category-based search. Category-based

search directly ranks all the categories (i.e., clusters) by not using

the nearest training documents.
Three category assignment strategies --- k-per-dot, probability

threshold, and proportional assignment --- are also compared on

WSJ. For GK, since each document has only a single category,

only the 1-per-dot strategy was evaluated,
The effectiveness of text categorization was measured as recall

and precision calculated by the following equations:

the number of categories that are

Recall =
correctly assigned to documents

the number of categories that should be’

assigned to documents

the number of categories that are

Precision =
correctly assigned to documents

the number of categories that are”

assigned to documents

O*U p I

o lW 200 Soo 400 500 Soo 7m WI
Number a4 the neared nsighbore (to

Figure 3: Effectiveness of category search strategies on GK.

Because of the tmdeoff between recall and precision, we summarize
them into a breakeven point at which they become the same
value [Lewis, 1992]. Note here that GK always offers the same
value of recall and precision, since only one category was assigned
to each document by the editors and 1-perdoc assignment strategy
was used by the search programs. For WSJ, we varied the threshold

in category assignment strategies and obtained breakeven points.

5 Results and Discussions

Figure 3 compares the effectiveness of the four category search
strategies on GK when the number of constructed clusters was set

to 110. The number K of the nearest documents varied from 1
to the maximum value (i.e., the number of training documents).

Full search offered the best effectiveness unless K was very small.
Cluster-Based Search (CBS) with HBC also well approximated the
performance curve of full search. This suggests that CBS with
HBC would be a balanced model with high efficiency and high
effectiveness. CBS with Ward’s method, on the contrary, provided
poor performance when K was small. One interesting tendency

in the performance curves is that all the strategies with complex
clustering (i.e., two CBS’s) and that with time-consuming cluster

search (i.e., full search) converge to the performance of the simple
strategy (i.e., category-based search), which does not need complex
clustering method and is also efficient in searching clusters. We
consider the effectiveness of category-based search as the reference.

Other sophisticated search strategies should excwd this reference
level because they use more computational resources in clustering
or searching. From thk viewpeint, CBS with Ward’s method is not

an appropriate strategy. In later experiments, we only evaluated the

performance of CBS with HBC as a representation of CBS’S.

Figure 4 shows the results on WSJ. The number of constructed
clusters was set to 600, and h“ varied from 1 to about 1200. The

fiist thing we can see in the figure is the advantage of proportional
assignment. Under this assignment strategy, both full search and
CBS stay near the category-based search reference level. This result
suggests the use of category-based search if the categorization task
can be processed in batch where proportional assignment is possible
to apply. Under tbe other two category assignment strategies,
both full search and CBS result in a significant improvement
over the reference level, confirming the advantage of using these

sophisticated search strategies. The difference in the shapes of the
performance curves for full search and CBS is also stt~estive. For

full search, the range of h’ that offers near the maximum breakeven
point is very narrow. That is, soon after the effectiveness reaches at

the maximum point it begins to decline steeply toward the reference
level. For CBS, on the other hand, the maximum breakeven point
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is maintained over a wide of h“ and degeneration occurs very
slowly. Note also that under the k-per-dot strategy, the maximum

breakeven point reached by CBS is higher than that reached by

full search. We assume that this is because full search is sensitive

to noise in training data; as h“ grows, more documents that are

irrelevant to a test document would thus be easily included into the

nearest documents. Since it is difficult to identify the optimum K
during the running time of applications, the model is prefetred in
which the maximum effectiveness is robust against K.

Lastly, we investigated the effect of the number of constructed

clusters, NC, on the performance of CBS. For the GK data set
we extracted 110, 90, and 70 clusters from a dendrogram. For the
WSJ data set we extracted 600, 400, and 200 clusters. Figure 5

shows the results obtained when k-per-dot was used as the category

assignment strategy. We can see that for GK the performance curve

of CBS approaches that of full search as NC increases. Note

that the full semch corresponds to the extreme case of CBS where
NC is the maximum value (i.e., the number of ttaining data).

Since the efficiency in searching clusters also depends on NC
(i.e., O(NC log Nc)), selecting the appropriate number of clusters
would be an important issue. Although we do not discuss tlis
issue more in this paper, one criterion for thk selection can be
found in statistical model selections like MDL [Rissanen, 1989]
and AIC [Akaike, 1974].

6 Summary

This experimental evaluation of category search strategies suggests

the following:

● Category-based search and proportional assignment should
be used when the categorization task is a batch processing

type. This framework would then offer a better performance
than others with great efficiency in constructing and searching
clusters.

● Otherwise, cluster-based search with probabilistic clustering

(for example, HBC) would be a balanced framework with
high efficiency and high effectiveness. ‘Ilk framework

would also be appropriate when the target data set contains

much noise.

Our experiments, like previous experiments [Jardine and Van Ri-

jsbergen, 1971, van Rijsbergen, 1974, Croft 1980], could not verify

that the highest effectiveness of a cluster-based search is necessarily
greater than that of a fill search. We should, however, note that the

highest performance obtained with the full search was sensitive to
the number of the nearest documenk, as seen in the experiments
on WSJ. With regard to the average performance, the cluster-based
search was more effective than the full search owing to the gen-

eralization of training documents. Although we should confirm
this result on other data sets, the noise tolerance of a cluster-based

search is an attractive characteristic of a search strategy used in
categorization/retrieval systems.
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A Program

* ! /usr/local/bin/perl

#
#
#
#
#
#
#
#
#
#
#
*
#
#
#
#
#
#

A Simple Perl Program of HBC

usage: hbc <InputDir>

Object files for clustering should be under
the directory <InputDir>. The format of an

object file is like follows.

<terml> <freql>\n

<ternr2> <freq2>\n

Each line consists of two fields separated
by spaces; the first one ia the name of the
term, and the second one is the frequency
of the term in the object. For example, a
line “computer 15” means that the term

# “computer;’ occurs fifteen times in the object

# (i.e. document).

$HUGE = 100000;

if ($SARGV != o) {

die “usage: $0 <InputDir>\n”;

}
($Idir) = @ARGV;

$step = O;

## read documents
##

$NDoc = O; # number of documents

$NUord = O; # number of vords

opendir(IDIR> $Idir):
@dlist = grep(!/-\.\.?$/, readdir(IDIR));
closedir(IDIR) ;

foreach $doc (Odlist) {

open(DOC, “$Idir/$doc”);
rmdef(Otmp);
rrhile(<DOC>) {

chop ;

($lJord, $Freq) = split;
push(Otmp, ($Word)); # make word list

$NWord += $Freq;

$NWordInD[$NDocl += $Freq;
$NWordInC[$NDocI += $Freq;
$WFreq{$Word} += $Freq;
$WFreqInD{$NDoc,$Word} += $Freq;

$WFreqInC{$NDoc,$Word} += $Freq;
3
$NDocs[$NDocI = 1;

$DocList[$NDoc] = “$NDoc”;

$WordList[$NDocI = join($; , @tmp);
$ID[$NDoc++] = “$doc”;
close(DOC);

}

#* initialize

##
for ($c = O; $C < $NDoc; $c++) {

# P(cld)

$Intra[$cl = &UnitIntra($c);
}
for ($i = O; $i < $NDoc - 1; $i++) ~

for ($j = $i + 1; $j < $NDoc; $j++) {
# P(cl \CUp c21d)

$Pmatrix{$i, $j} = &HergeIntra($i, $j);

}

3

## clustering
##
for ($step = I; $step < $NDOC; $step++) {

($c1, $c2, $prob) = &FindClosestPairo;
printf STDOUT (“Xd\tld\tXs\tXs\tle\n”, $c1, $c2,

$ID[$cII, $ID[$c21, $prob);
&HergePair($cl, $c2);

}

## subroutines
88

sub UnitIntra { # calculate P(cld)
local ($c) = @_;
local ($out, $tmp, $d, $w);

$Out = 0.0;
foreach $d (split($; , $DocList[$c])) {

$tmp = 0.0;
foreach $W (split($; , $UordList[$c])) {

$tmp += ($WFreqInD{$d,$w}/$NWordInD[$d] ) *
($WFreqInC{$c,$w]/$NWordInC[$c] ) /

($WFreq{$wl/$NWord);
3
# In clustering we assume that clusters are
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# equally distributed.

$out += log($tmp);

1
return ($out);

}

sub !fergeIntra { # calculate P(c1 \cup c21d)
local ($cl, $c2) = @-;
local ($out, $tmp, $d, $w);

$Out = 0.0;
foreach $d (&tUnion($DocList[$cl],

$DocList[$c2])) {
$tmp = 0.0;
foreach $W (&Union($WordList[$cl],

$WordList[$c2])) {

$tmp += ($WFreqInD{$d,$w}/$NWordInD[$d] ) *

(($WFreqInC{$cl,$w}+$UFreqInC{$c2 ,$wl)/

($NWordInC[$cll+$NWordInC[$c21)) /
($UFreq{$w}/$NWord);

}
# In clustering we assume that clusters are
# equally distributed.

$out += log($tmp);

3
return ($Out);

3

$Intra[$cl] = &UnitIntra($cl):

for ($i = O: $i c $?JDoc: $i++) {

}
3

sub

sub FindClosestPair {

local ($i, $j);
local ($c1, $c2, $maxprob, $prob);

$maxprob = - $HUGE;
for ($i = O; $i < $NDoc - 1; $i+t) {

if ($NDocs[$i] > O) {

for ($j = $i + 1; $j z $lJDoc; $j++) {
if ($NDocs[$j] > O) {

$prob = $Pmatrix{$i,$jl
- $Intra[$i] - $Intra[$jl;

if ($prob > $maxprob) {

$cl = $i;

$c2 = $j;
$maxprob = $prob;

1
}

}
1

}
retum(($cl ,$c2,$maxprob) );

}

sub MergePair { # merge cl and C2 into cl
local ($cl, $c2) = @-;

local ($w, $c, $i, $f, Otmp, $c-r, $C-l);

$NWordInC[$cll += $NWordInC[$c2];
foreach $W (split($; , $WordList[$c2])) {

$WFreqInC{$cl, $w] += $WFreqInC{$c2, $w];
}

if (($i != $cI) && ($NDocs[$i] > O)) {
if ($i < $cl) {

$c-1 = $i;
$c-r = $c1;

} else i
$C-1 = $Cl;

$c-r = $i;

}
$Pmatrix{$cJ, $c-rl =

&MergeIntra($c_l, $c-r);

}

Union {

local ($listl, $list2) = 0-;

local (Otmp, %freq);

tltmp = split($; , $listl);

push(@tmp, split($; ,

foreach $i (@tmp) {

$freq{$i}++;
}
return(keys (~freq));

$list2));

Otmp = &Union($WordList[$cl], $WordList[$c2]);

$WordList[$cll = join($; , @tmp);

Otmp = split($;, $DocList[$cl]);

push(~tmp, split($; , $DocList[$c2]));

$DocList[$cl] = join($; , @tmp);

$NDOCS[$CII += $NDOCS[$C21;
$NDOCS[$C21 = o;
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