
Bayesian Online Classifiers for
Text Classification and Filtering

Kian Ming Adam Chai
DSO National Laboratories

20 Science Park Drive
Singapore 118230

ckianmin@dso.org.sg

Hwee Tou Ng
Department of Computer Science
National University of Singapore

3 Science Drive 2
Singapore 117543

nght@comp.nus.edu.sg

Hai Leong Chieu
DSO National Laboratories

20 Science Park Drive
Singapore 118230

chaileon@dso.org.sg

ABSTRACT
This paper explores the use of Bayesian online classifiers
to classify text documents. Empirical results indicate that
these classifiers are comparable with the best text classifi-
cation systems. Furthermore, the online approach offers the
advantage of continuous learning in the batch-adaptive text
filtering task.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information filtering

General Terms
Algorithms, Experimentation

Keywords
Text Classification, Text Filtering, Bayesian, Online, Ma-
chine Learning

1. INTRODUCTION
Faced with massive information everyday, we need au-

tomated means for classifying text documents. Since hand-
crafting text classifiers is a tedious process, machine learning
methods can assist in solving this problem[15, 7, 27].

Yang & Liu[27] provides a comprehensive comparison of
supervised machine learning methods for text classification.
In this paper we will show that certain Bayesian classi-
fiers are comparable with Support Vector Machines[23], one
of the best methods reported in [27]. In particular, we
will evaluate the Bayesian online perceptron[17, 20] and the
Bayesian online Gaussian process[3].

For text classification and filtering, where the initial train-
ing set is large, online approaches are useful because they
allow continuous learning without storing all the previously

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’02, August 11-15, 2002, Tampere, Finland.
Copyright 2002 ACM 1-58113-561-0/02/0008 ...$5.00.

seen data. This continuous learning allows the utilization
of information obtained from subsequent data after the ini-
tial training. Bayes’ rule allows online learning to be per-
formed in a principled way[16, 20, 17]. We will evaluate the
Bayesian online perceptron, together with information gain
considerations, on the batch-adaptive filtering task[18].

2. CLASSIFICATION AND FILTERING
For the text classification task defined by Lewis[9], we

have a set of predefined categories and a set of documents.
For each category, the document set is partitioned into two
mutually exclusive sets of relevant and irrelevant documents.
The goal of a text classification system is to determine whether
a given document belongs to any of the predefined cate-
gories. Since the document can belong to zero, one, or more
categories, the system can be a collection of binary classi-
fiers, in which one classifier classifies for one category.

In Text REtrieval Conference (TREC), the above task is
known as batch filtering. We will consider a variant of batch
filtering called the batch-adaptive filtering[18]. In this task,
during testing, if a document is retrieved by the classifier,
the relevance judgement is fed back to the classifier. This
feedback can be used to improve the classifier.

2.1 Corpora and Data
For text classification, we use the ModApte version of

the Reuters-21578 corpus1, where unlabelled documents are
removed. This version has 9,603 training documents and
3,299 test documents. Following [7, 27], only categories that
have at least one document in the training and test set are
retained. This reduces the number of categories to 90.

For batch-adaptive filtering, we attempt the task of TREC-
9[18], where the OHSUMED collection[6] is used. We will
evaluate on the OHSU topic-set, which consists of 63 topics.
The training and test material consist of 54,710 and 293,856
documents respectively. In addition, there is a topic state-
ment for each topic. For our purpose, this is treated as an
additional training document for that topic. We will only
use the title, abstract, author, and source sections of the
documents for training and testing.

2.2 Representation
There are various ways to transform a document into a

representation convenient for classification. We will use the
1Available via http://www.daviddlewis.com/resources/
testcollections/reuters21578.

bag-of-words approach, where we only retain frequencies
of words after tokenisation, stemming, and stop-words re-
moval. These frequencies can be normalized using various
schemes[19, 6]; we use the ltc normalization:

li,d = 1 + log2 TFi,d

ti = log2

N

ni

ltci,d =
li,d · ti� �

j∈{terms in d} (lj,d · tj)
2
,

where the subscripts i and d denote the ith term and the
dth document respectively, TFi,d is the frequency of the ith
term in the dth document, ni is the document-frequency of
the ith term, and N is the total number of documents.

2.3 Feature Selection Metric
Given a set of candidate terms, we select features from

the set using the likelihood ratio for binomial distribution
advocated by Dunning[5]:

λ = � Rt+R
t̄

N � Rt+R
t̄ � Nt+N

t̄

N � Nt+N
t̄

� Rt

Rt+Nt � Rt � Nt

Rt+Nt � Nt � R
t̄

R
t̄
+N

t̄
� R

t̄ � N
t̄

R
t̄
+N

t̄
� N

t̄

,

where Rt (Nt) is the number of relevant (non-relevant) train-
ing documents which contain the term, Rt̄ (Nt̄) is the num-
ber of relevant (non-relevant) training documents which do
not, and N is the total number of training documents.

Asymptotically, −2 ln λ is χ2 distributed with 1 degree of
freedom. We choose terms with −2 ln λ more than 12.13,
i.e. at 0.05% significance level. More details on the feature
selection procedures will be given in section 4.

2.4 Performance Measures
To evaluate a text classification system, we use the F1

measure introduced by van Rijsbergen[22]. This measure
combines recall and precision in the following way:

Recall =
number of correct positive predictions

number of positive examples

Precision =
number of correct positive predictions

number of positive predictions

F1 =
2 × Recall × Precision

Recall + Precision
.

For ease of comparison, we summarize the F1 scores over
the different categories using the micro- and macro-averages
of F1 scores[11, 27]:

Micro-avg F1 = F1 over categories and documents

Macro-avg F1 = average of within-category F1 values.

The micro- and macro-average F1 emphasize the perfor-
mance of the system on common and rare categories re-
spectively. Using these averages, we can observe the effect
of different kinds of data on a text classification system.

In addition, for comparing two text classification systems,
we use the micro sign-test (s-test) and the macro sign-test
(S-test), which are two significance tests first used for com-
paring text classification systems in [27]. The s-test com-
pares all the binary decisions made by the systems, while
the S-test compares the within-category F1 values. Simi-
lar to the F1 averages, the s-test and S-test compare the

performance of two systems on common and rare categories
respectively.

To evaluate a batch-adaptive filtering system, we use the
T9P measure of TREC-9[18]:

T9P =
number of correct positive predictions

Max(50, number of positive predictions)
,

which is precision, with a penalty for not retrieving 50 doc-
uments.

3. BAYESIAN ONLINE LEARNING
Most of this section is based on work by Opper[17], Solla

& Winther[20], and Csató & Opper[3].
Suppose that each document is described by a vector x,

and that the relevance indicator of x for a category is given
by label y ∈ {−1, 1}, where −1 and 1 indicates irrelevant
and relevant respectively. Given m instances of past data
Dm = {(yt,xt), t = 1...m}, the predictive probability of the
relevance of a document described by x is

p(y|x,Dm) = � da p(y|x,a)p(a|Dm),

where we have introduced the classifier a to assist us in the
prediction. In the Bayesian approach, a is a random variable
with probability density p(a|Dm), and we integrate over all
the possible values of a to obtain the prediction.

Our aim is to obtain a reasonable description of a. In
the Bayesian online learning framework[16, 20, 17], we be-
gin with a prior p(a|D0), and perform incremental Bayes’
updates to obtain the posterior as data arrives:

p(a|Dt+1) =
p(yt+1|xt+1, a)p(a|Dt)�
da p(yt+1|xt+1, a)p(a|Dt)

.

To make the learning online, the explicit dependence of
the posterior p(a|Dt+1) on the past data is removed by ap-
proximating it with a distribution p(a|At+1), where At+1

characterizes the distribution of a at time t + 1. For exam-
ple, if p(a|At+1) is a Gaussian, then At+1 refers to its mean
and covariance.

Hence, starting from the prior p0(a) = p(a|A0), learning
from a new example (yt+1,xt+1) comprises two steps:

Update the posterior using Bayes rule

p(a|At, (yt+1,xt+1)) ∝ p(yt+1|xt+1, a) p(a|At)

Approximate the updated posterior by parameterisation

p(a|At, (yt+1,xt+1)) → p(a|At+1),

where the approximation step is done by minimizing the
Kullback-Leibler distance between the the approximating and
approximated distributions.

The amount of information gained about a after learn-
ing from a new example can be expressed as the Kullback-
Leibler distance between the posterior and prior distribu-
tions[25]:

IG(yt+1, xt+1|Dt) = � da p(a|Dt+1) log2

p(a|Dt+1)

p(a|Dt)

≈ � da p(a|At+1) log2

p(a|At+1)

p(a|At)
,

where instances of the data D are replaced by the summaries
A in the approximation.

To simplify notation henceforth, we use pt(a) and 〈. . .〉t to
denote p(a|At) and averages taken over p(a|At) respectively.
For example, the predictive probability can be rewritten as

p(y|x,Dt) ≈ p(y|x, At) = � da p(y|x,a)pt(a) = 〈p(y|x,a)〉t .

In the following sections, the scalar field h = a ·x will also
be used to simplify notation and calculation.

3.1 Bayesian Online Perceptron
Consider the case where a describes a perceptron. We then

define the likelihood as a probit model

p(y|x,a) = Φ � ya · x
σ0 � ,

where σ2
0 is a fixed noise variance, and Φ is the cumulative

Gaussian distribution

Φ(u) =
1√
2π

� u

−∞
dξ e

−ξ2/2
.

If p0(a) is the spherical unit Gaussian, and pt(a) is the
Gaussian approximation, Opper[16, 17] and Solla & Winther[20]
obtain the following updates by equating the means and co-
variances of p(a|At+1) and p(a|At, (yt+1,xt+1)):

〈a〉t+1 = 〈a〉t + st+1
∂

∂〈h〉t

ln 〈p(yt+1|h)〉t

Ct+1 = Ct + st+1s
T
t+1

∂2

∂〈h〉2t
ln 〈p(yt+1|h)〉t ,

where

st+1 = Ctxt+1,

〈p(yt+1|h)〉t = Φ � yt+1 〈h〉t

σt+1 � ,

σ
2
t+1 = σ

2
0 + xT

t+1Ctxt+1 and

〈h〉t = 〈a〉Tt xt+1.

3.1.1 Algorithm
Training the Bayesian online perceptron on m data in-

volves successive calculation of the means 〈a〉t and covari-
ances Ct of the posteriors, for t ∈ {1, ..., m}:

1. Initialize 〈a〉0 to be 0 and C0 to be 1 (identity matrix),
i.e. a spherical unit Gaussian centred at origin.

2. For t = 0, 1, ..., m − 1

3. yt+1 is the relevance indicator for document xt+1

4. Calculate st+1, σt+1, 〈h〉t and 〈p(yt+1|h)〉t

5. Calculate u =
yt+1〈h〉

t

σt+1
and � = 1√

2π
exp(− 1

2
u2)

6. Calculate ∂
∂〈h〉

t

ln 〈p(yt+1|h)〉t =
yt+1

σt+1
· 1

〈p(yt+1|h)〉
t

· �
7. Calculate ∂2

∂〈h〉2
t

ln 〈p(yt+1|h)〉t =

− 1

σ2
t+1 � u · �

〈p(yt+1|h)〉t

+ � �
〈p(yt+1|h)〉t � 2 �

8. Calculate 〈a〉t+1 and Ct+1

The prediction for datum (y,x) simply involves the cal-
culation of 〈p(y|x,a)〉m = 〈p(y|h)〉m.

3.2 Bayesian Online Gaussian Process
Gaussian process (GP) has been constrained to problems

with small data sets until recently when Csató & Opper[3]
and Williams & Seeger[24] introduced efficient and effective
approximations to the full GP formulation. This section will
outline the approach in [3].

In the GP framework, a describes a function consisting of
function values {a(x)}. Using the probit model, the likeli-
hood can be expressed as

p(y|x,a) = Φ � ya(x)

σ0 � ,

where σ0 and Φ are described in section 3.1.
In addition, p0(a) is a GP prior which specifies a Gaussian

distribution with zero mean function and covariance/kernel
function K0(x,x′) over a function space. If pt(a) is also a
Gaussian process, then Csató & Opper obtain the following
updates by equating the means and covariances of p(a|At+1)
and p(a|At, (yt+1, xt+1)):

〈a〉t+1 = 〈a〉t + st+1
∂

∂〈h〉t

ln 〈p(yt+1|h)〉t

Ct+1 = Ct + st+1s
T
t+1

∂2

∂〈h〉2t
ln 〈p(yt+1|h)〉t ,

where

st+1 = Ctkt+1 + et+1,

〈p(yt+1|h)〉t = Φ � yt+1 〈h〉t

σt+1 � ,

σ
2
t+1 = σ

2
0 + k

∗
t+1 + kT

t+1Ctkt+1 and

〈h〉t = 〈a(xt+1)〉t = 〈a〉Tt kt+1

Notice the similarities to the updates in section 3.1. The
main difference is the ‘kernel trick’ introduced into the equa-
tions through

k
∗
t+1 = K0(xt+1,xt+1) and

kt+1 = (K0(x1,xt+1), . . . , K0(xt,xt+1))
T

New inputs xt+1 are added sequentially to the system via
the (t + 1)th unit vector et+1. This results in a quadratic
increase in matrix size, and is a drawback for large data
sets, such as those for text classification. Csató & Opper
overcome this by introducing sparseness into the GP. The
idea is to replace et+1 by the projection

êt+1 = K−1
t kt+1,

where

Kt = {K0(xi,xj), i, j = 1 . . . t}.
This approximation introduces an error

εt+1 = (k∗
t+1 − kT

t+1K
−1
t kt+1)

∂

∂〈h〉t

ln 〈p(yt+1|h)〉t ,

which is used to decide when to employ the approximation.
Hence, at any time the algorithm holds a set of basis vec-

tors. It is usually desirable to limit the size of this set. To
accommodate this, Csató & Opper describe a procedure for
removing a basis vector from the set by reversing the process
of adding new inputs.

For lack of space, the algorithm for the Bayesian Online
Gaussian Process will not be given here. The reader is re-
ferred to [3] for more information.

4. EVALUATION

4.1 Classification on Reuters-21578
In this evaluation, we will compare Bayesian online per-

ceptron, Bayesian online Gaussian process, and Support Vec-
tor Machines (SVM)[23]. SVM is one of the best performing
learning algorithms on the Reuters-21578 corpus[7, 27].

The Bayesian methods are as described in section 3, while
for SVM we will use the SV M light package by Joachims[8].
Since SVM is a batch method, to have a fair comparison,
the online methods are iterated through the training data 3
times before testing.2

4.1.1 Feature Selection
For the Reuters-21578 corpus, we select as features for

each category the set of all words for which −2 lnλ > 12.13.
We further prune these by using only the top 300 features.
This reduces the computation time required for the calcula-
tion of the covariances of the Bayesian classifiers.

Since SVM is known to perform well for many features,
for the SVM classifiers we also use the set of words which
occur in at least 3 training documents[7]. This gives us 8,362
words. Note that these words are non-category specific.

4.1.2 Thresholding
The probabilistic outputs from the Bayesian classifiers can

be used in various ways. The most direct way is to use the
Bayes decision rule, p(y = 1|x,Dm) > 0.5, to determine
the relevance of the document described by x.3 However,
as discussed in [10, 26], this is not optimal for the chosen
evaluation measure.

Therefore, in addition to 0.5 thresholding, we also empir-
ically optimise the threshold for each category for the F1

measure on the training documents. This scheme, which we
shall call MaxF1, has also been employed in [27] for thresh-
olding kNN and LLSF classifiers. The difference from our
approach is that the threshold in [27] is calculated over a
validation set. We do not use a validation set because we
feel that, for very rare categories, it is hard to obtain a rea-
sonable validation set from the training documents.

For the Bayesian classifiers, we also perform an analyti-
cal threshold optimisation suggested by Lewis[10]. In this
scheme, which we shall call ExpectedF1, the threshold for
each category is selected to optimise the expected F1:

E [F1]θ ≈ �� ��� i∈D(1 − pi) if |D+| = 0
2 �

i∈D+
pi

|D+|+ � i∈D
pi

otherwise,

where θ is the threshold, pi is the probability assigned to
document i by the classifier, D is the set of all test docu-
ments, and D+ is the set of test documents with probabilities
higher than the threshold θ.

Note that ExpectedF1 can only be applied after the prob-
abilities for all the test documents are assigned. Hence the
classification can only be done in batch. This is unlike the
first two schemes, where classification can be done online.

4.1.3 Results and Discussion
2See section A.2 for discussion on the number of passes.
3For SVM, to minimise structural risks, we would classify
the document as relevant if w · x + b > 0, where w is the
hyperplane, and b is the bias.
4See section A.3 for discussion on the jitter terms δij .

Table 1: Description of Methods
Description4

SVM-1 K0 = xi · xj + 1
SVM-2 K0 = (xi · xj + 1)2

SVM-R1 K0 = exp(− 1
2
|xi − xj |2)

Perceptron σ0 = 0.5, one fixed feature (for bias)
GP-1 σ0 = 0.5, K0 = xi · xj + 1 + 10−4δij

GP-2 σ0 = 0.5, K0 = (xi · xj + 1)2 + 10−4δij

GP-R1 σ0 = 0.5, K0 = exp(− 1
2
|xi − xj |2) + 10−4δij

Table 2: Micro-/Macro-average F1

0.5 MaxF1 ExpectedF1

SVMa-1 86.15 / 42.63 86.35 / 56.92
SVMa-2 85.44 / 40.13 86.19 / 56.42
SVMa-R1 84.99 / 37.61 86.63 / 53.14
SVMb-1 85.60 / 52.03 85.05 / 52.43
SVMb-2 85.60 / 50.53 84.50 / 50.49
SVMb-R1 85.75 / 50.52 84.65 / 51.27
Perceptron 85.12 / 45.23 86.69 / 52.16 86.44 / 53.08
GP-1 85.08 / 45.20 86.73 / 52.12 86.54 / 53.12
GP-2 85.58 / 47.90 86.60 / 52.19 86.77 / 55.04
GP-R1 85.18 / 44.88 86.76 / 52.61 86.93 / 53.35

Table 1 lists the parameters for the algorithms used in our
evaluation, while Table 2 and 3 tabulate the results. There
are two sets of results for SVM, and they are labeled SVMa

and SVMb. The latter uses the same set of features as the
Bayesian classifiers (i.e. using the −2 ln λ measure), while
the former uses the set of 8,362 words as features.

Table 2 summarizes the results using F1 averages. Table
3 compares the classifiers using s-test and S-test. Here, the
MaxF1 thresholds are used for the classification decisions.
Each row in these tables compares the method listed in the
first column with the other methods. The significance levels
from [27] are used.

Several observations can be made:

• Generally, MaxF1 thresholding increases the performance
of all the systems, especially for rare categories.

• For the Bayesian classifiers, ExpectedF1 thresholding
improves the performance of the systems on rare cat-
egories.

• Perceptron implicitly implements the kernel used by
GP-1, hence their similar results.

• With MaxF1 thresholding, feature selection impedes
the performance of SVM.

• In Table 2, SVM with 8,362 features have slightly lower
micro-average F1 to the Bayesian classifiers. However,
the s-tests in Table 3 show that Bayesian classifiers
outperform SVM for significantly many common cat-
egories. Hence, in addition to computing average F1

measures, it is useful to perform sign tests.

• As shown in Table 3, for limited features, Bayesian
classifiers outperform SVM for both common and rare
categories.

• Based on the sign tests, the Bayesian classifiers outper-
form SVM (using 8,362 words) for common categories,
and vice versa for rare categories.

Table 3: s-test/S-test using MaxF1 thresholding
SVMa-1 SVMa-2 SVMa-R1 SVMb-1 SVMb-2 SVMb-R1 Pptron GP-1 GP-2 GP-R1

SVMa-1 ∼ / ∼ < / ∼ � / � � / � � / � � / � � / � � / � � / �
SVMa-2 ∼ / ∼ � / ∼ > / � � / � � / � � / � � / � � / ∼ � / >

SVMa-R1 > / ∼ � / ∼ � / ∼ � / � � / � < / > < / > ∼ / ∼ < / ∼
SVMb-1 � / � < / � � / ∼ � / ∼ > / > � / < � / ∼ � / < � / <

SVMb-2 � / � � / � � / � � / ∼ ∼ / ∼ � / < � / < � / � � / �
SVMb-R1 � / � � / � � / � < / < ∼ / ∼ � / < � / � � / � � / �
Perceptron � / � � / � > / < � / > � / > � / > ∼ / ∼ ∼ / ∼ ∼ / ∼
GP-1 � / � � / � > / < � / ∼ � / > � / � ∼ / ∼ ∼ / ∼ ∼ / ∼
GP-2 � / � � / ∼ ∼ / ∼ � / > � / � � / � ∼ / ∼ ∼ / ∼ ∼ / ∼
GP-R1 � / � � / < > / ∼ � / > � / � � / � ∼ / ∼ ∼ / ∼ ∼ / ∼
“�” or “�” means P-value ≤ 0.01; “>” or “<” means 0.01 < P-value ≤ 0.05; “∼” means P-value > 0.05.

The last observation suggests that one can use Bayesian
classifiers for common categories, and SVM for rare ones.

4.2 Filtering on OHSUMED
In this section, only the Bayesian online perceptron will

be considered. In order to avoid numerical integration of
the information gain measure, instead of the probit model
of section 3.1, here we use a simpler likelihood model in
which the outputs are flipped with fixed probability κ:

p(y|x,a) = κ + (1 − 2κ)Θ (ya · x) ,

where

Θ(x) = � 1 x > 0

0 otherwise.

The update equations will also change accordingly, e.g.

〈p(yt+1|h)〉t = κ + (1 − 2κ)Φ � yt+1 〈h〉t

σt+1 � ,

σ
2
t+1 = xT

t+1Ctxt+1 and

〈h〉t = 〈a〉Tt xt+1.

Using this likelihood measure, we can express the infor-
mation gained from datum (yt+1,xt+1) as

IG(yt+1,xt+1|Dt) ≈

log2 κ+Φ � yt+1 �〈h〉t+1�
σt+1 � log2 � 1 − κ

κ � −log2 〈p(yt+1|h)〉t ,

where �
σ

2
t+1 = xT

t+1Ct+1xt+1 and�〈h〉t+1 = 〈a〉Tt+1 xt+1.

We use κ = 0.1 in this evaluation. The following sections
will describe the algorithm in detail. To simplify presen-
tation, we will divide the batch-adaptive filtering task into
batch and adaptive phases.

4.2.1 Feature Selection and Adaptation
During the batch phase, words for which −2 ln λ > 12.13

are selected as features.
During the adaptive phase, when we obtain a feedback, we

update the features by adding any new words with −2 ln λ >

12.13. When a feature is added, the distribution of the per-

ceptron a is extended by one dimension:

〈a〉 → ����� 〈a〉

0

�
			� C → ��� C 0

0 1

�
	� .

4.2.2 Training the classifier
During the batch phase, the classifier is iterated through

the training documents 3 times. In addition, the relevant
documents are collected for use during the adaptive phase.

During the adaptive phase, retrieved relevant documents
are added to this collection. When a document is retrieved,
the classifier is trained on that document and its given rel-
evance judgement.

The classifier will be trained on irrelevant documents most
of the time. To prevent it from “forgetting” relevant docu-
ments due to its limited capacity, whenever we train on an
irrelevant document, we would also train on a past relevant
document. This past relevant document is chosen succes-
sively from the collection of relevant documents.

This is needed also because new features might have been
added since a relevant document was last trained on. Hence
the classifier would be able to gather new information from
the same document again due to the additional features.

Note that the past relevant document does not need to be
chosen in successive order. Instead, it can be chosen using
a probability distribution over the collection. This will be
desirable when handling topic-drifts.

We will evaluate the effectiveness of this strategy of re-
training on past retrieved relevant documents, and denote
its use by +rel. Though its use means that the algorithm
is no longer online, asymptotic efficiency is unaffected, since
only one past document is used for training at any instance.

4.2.3 Information Gain
During testing, there are two reasons why we retrieve

a document. The first is that it is relevant, i.e. p(y =
1|x,Dt) > 0.5, where x represents the document. The sec-
ond is that, although the document is deemed irrelevant
by the classifier, the classifier would gain useful information
from the document. Using the measure IG(y,x|Dt), we cal-
culate the expected information gain

〈IG(x|Dt)〉 = �
υ∈{−1,1}

p(y = υ|x,Dt) · IG(y = υ,x|Dt).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

N
ret

θ Target number of
documents = 50

Figure 1: θ versus Nret tuned for T9P

A document is then deemed useful if its expected infor-
mation gain is at least θ. Optimizing for the T9P measure
(i.e. targeting 50 documents), we choose θ to be

θ = 0.999 � 1 + exp � −Nret − 50.0

10 � � −1

+ 0.001,

where Nret is the total number of documents that the system
has retrieved. Figure 1 plots θ against Nret. Note that this
is a kind of active learning, where the willingness to tradeoff
precision for learning decreases with Nret. The use of this
information gain criteria will be denoted by +ig.

We will test the effectiveness of the information gain strat-
egy, against an alternative one. The alternative, denoted by
+rnd, will randomly select documents to retrieve based on
the probability

U = � 0 if Nret >= 50
50−Nret

293856
otherwise,

where 293,856 is the number of test documents.

4.2.4 Results and Discussion
Table 4 lists the results of seven systems. The first two are

of Microsoft Research Cambridge and Fudan University re-
spectively. These are the only runs in TREC-9 for the task.
The third is of the system as described in full, i.e. Bayesian
online perceptron, with retraining on past retrieved relevant
documents, and with the use of information gain. The rest
are of the Bayesian online perceptron with different combi-
nations of strategies.

Besides the T9P measure, for the sake of completeness, Ta-
ble 4 also lists the other measures used in TREC-9. Taken
together, the measures show that Bayesian online percep-
tron, together with the consideration for information gain,
is a very competitive method.

For the systems with +rel, the collection of past known
relevant documents is kept. Although Microsoft uses this
same collection for its query reformulation, another collec-
tion of all previously seen documents is used for threshold
adaptation. Fudan maintains a collection of past retrieved
documents and uses this collection for query adaptation.

5[18] reports results from run ok9bfr2po, while we report
results from the slightly better run ok9bf2po.

0 2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

110

120

130

Average number of relevant documents retrieved

A
ve

ra
ge

 n
um

be
r

of
 f

ea
tu

re
s

Pptron+rel+ig
Pptron+ig
Pptron+rnd
Pptron

Figure 2: Variation of the number of features as
relevant documents are retrieved. The plots for
Pptron+rel+ig and Pptron+ig are very close. So are
the plots for Pptron+rnd and Pptron.

In a typical operational system, retrieved relevant docu-
ments are usually retained, while irrelevant documents are
usually discarded. Therefore +rel is a practical strategy to
adopt.

Figure 2 plots the average number of features during the
adaptive phase. We can see that features are constantly
added as relevant documents are seen. When the classifier
is retrained on past documents, the new features enable the
classifier to gain new information from these documents. If
we compare the results for Pptron+rel and Pptron in Ta-
ble 4, we find that not training on past documents causes
the number of relevant documents retrieved to drop by 5%.
Similarly, for Pptron+rel+ig and Pptron+ig, the drop is
8%.

Table 5 breaks down the retrieved documents into those
that the classifier deems relevant and those that the clas-
sifier is actually querying for information, for Pptron+ig

and Pptron+rnd. The table shows that none of the doc-
uments randomly queried are relevant documents. This is
not surprising, since only an average of 0.017% of the test
documents are relevant. In contrast, the information gain
strategy is able to retrieve 313 relevant documents, which is
26.1% of the documents queried. This is a significant result.

Consider Pptron+ig. Table 4 shows that for Pptron, when
the information gain strategy is removed, only 731 relevant
documents will be retrieved. Hence, although most of the
documents queried are irrelevant, information gained from
these queries helps recall by the classifier (i.e. 815 docu-
ments versus 731 documents), which is important for reach-
ing the target of 50 documents.

MacKay[13] has noted the phenomenon of querying for
irrelevant documents which are at the edges of the input
space, and suggested maximizing information in a defined
region of interest instead. Finding this region for batch-
adaptive filtering remains a subject for further research.

Comparing the four plots in Figure 2, we find that, on
average, the information gain strategy causes about 3% more
features to be discovered for the same number of relevant
documents retrieved. A consequence of this is better recall.

Table 4: Results for Batch-adaptive filtering optimized for T9P measure.
Microsoft5 Fudan Pptron+rel+ig Pptron+ig Pptron+rnd Pptron+rel Pptron

Total retrieved 3562 3251 2716 2391 2533 1157 1057
Relevant retrieved 1095 1061 1227 1128 732 772 731
Macro-average recall 39.5 37.9 36.2 33.3 20.0 20.8 20.0
Macro-average precision 30.5 32.2 35.8 35.8 21.6 61.9 62.3
Mean T9P 30.5 31.7 31.3 29.8 19.2 21.5 20.8
Mean Utility -4.397 -1.079 15.318 15.762 -5.349 18.397 17.730
Mean T9U -4.397 -1.079 15.318 15.762 -5.349 18.397 17.730
Mean scaled utility -0.596 -0.461 -0.025 0.016 -0.397 0.141 0.138
Zero returns 0 0 0 0 0 8 0

Table 5: Breakdown of documents retrieved for Pptron+ig and Pptron+rnd. The numbers for the latter are in
brackets.

Relevant Not Relevant Total
docs retrieved by perceptron classifier proper 815 (732) 378 (345) 1193 (1077)

docs retrieved by information gain (or random strategy) 313 (0) 885 (1456) 1198 (1456)
Total 1128 (732) 1263 (1801) 2391 (2533)

5. CONCLUSIONS AND FURTHER WORK
We have implemented and tested Bayesian online percep-

tron and Gaussian processes on the text classification prob-
lem, and have shown that their performance is compara-
ble to that of SVM, one of the best learning algorithms on
text classification in the published literature. We have also
demonstrated the effectiveness of online learning with infor-
mation gain on the TREC-9 batch-adaptive filtering task.

Our results on text classification suggest that one can use
Bayesian classifiers for common categories, and maximum
margin classifiers for rare categories. The partitioning of the
categories into common and rare ones in an optimal way is
an interesting problem.

SVM has been employed to use relevance feedback by
Drucker et al [4], where the retrieval is in groups of 10 doc-
uments. In essence, this is a form of adaptive routing. It
would be instructive to see how Bayesian classifiers perform
here, without storing too many previously seen documents.

It would also be interesting to compare the merits of in-
cremental SVM[21, 1] with the Bayesian online classifiers.

Acknowledgments
We would like to thank Lehel Csató for providing details
on the implementation of the Gaussian process, Wee Meng
Soon for assisting in the data preparation, Yiming Yang
for clarifying the representation used in [27], and Loo Nin
Teow for proof-reading the manuscript. We would also like
to thank the reviewers for their many helpful comments in
improving the paper.

6. REFERENCES
[1] G. Cauwenberghs and T. Poggio. Incremental and

decremental support vector machine learning. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, NIPS
2000, volume 13. The MIT Press, 2001.

[2] D. Cox and E. Snell. Analysis of Binary Data.
Chapman & Hall, London, 2nd edition, 1989.

[3] L. Csató and M. Opper. Sparse representation for
Gaussian process models. In T. K. Leen, T. G.
Dietterich, and V. Tresp, editors, NIPS 2000,
volume 13. The MIT Press, 2001.

[4] H. Drucker, B. Shahrary, and D. C. Gibbon.
Relevance feedback using support vector machines. In
Proceedings of the 2001 International Conference on
Machine Learning, 2001.

[5] T. E. Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, 1993.

[6] W. Hersh, C. Buckley, T. Leone, and D. Hickam.
OHSUMED: An interactive retrieval evaluation and
new large test collection for research. In Proceedings of
the 17th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 192–201, 1994.

[7] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the European Conference on Machine
Learning (ECML), pages 137–142, 1998.

[8] T. Joachims. Making large-scale SVM learning
practical. In B. Schólkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods — Support
Vector Learning, chapter 11. The MIT Press, 1999.

[9] D. D. Lewis. Representation and Learning in
Information Retrieval. PhD thesis, Department of
Computer and Information Science, University of
Massachusetts at Amherst, 1992.

[10] D. D. Lewis. Evaluating and optimizing automomous
text classification systems. In Proceedings of the 18th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 246–254, 1995.

[11] D. D. Lewis, R. E. Schapire, J. P. Callan, and
R. Papka. Training algorithms for linear text
classifiers. In Proceedings of the 19th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
298–306, 1996.

[12] D. J. Mackay. Bayesian interpolation. Neural
Computation, 4(3):415–447, 1991.

[13] D. J. Mackay. Information-based objective functions
for active data selection. Neural Computation,
4(4):590–604, 1992.

[14] R. M. Neal. Monte Carlo implementation of Gaussian
process models for Bayesian regression and
classification. Technical Report CRG-TR-97-2,
Department of Computer Science, University of
Toronto, January 1997.

[15] H. T. Ng, W. B. Goh, and K. L. Low. Feature
selection, perceptron learning, and a usability case
study for text categorization. In Proceedings of the
20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 67–73, 1997.

[16] M. Opper. Online versus offline learning from random
examples: General results. Physical Review Letters,
77:4671–4674, 1996.

[17] M. Opper. A Bayesian approach to online learning. In
D. Saad, editor, On-Line Learning in Neural
Networks. Combridge University Press, 1998.

[18] S. Robertson and D. A. Hull. The TREC-9 filtering
track final report. In Proceedings of the 9th Text
REtrieval Conference (TREC-9), pages 25–40, 2001.

[19] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing
and Management, 24(5):513–523, 1988.

[20] S. A. Solla and O. Winther. Optimal perceptron
learning: an online Bayesian approach. In D. Saad,
editor, On-Line Learning in Neural Networks.
Combridge University Press, 1998.

[21] N. A. Syed, H. Liu, and K. K. Sung. Incremental
learning with support vector machines. In Proceedings
of the Workshop on Support Vector Machines at the
International Joint Conference on Artificial
Intelligence (IJCAI-99), 1999.

[22] C. van Rijsbergen. Information Retrieval.
Butterworths, London, 1979.

[23] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, New York, 1995.

[24] C. K. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, NIPS 2000,
volume 13. The MIT Press, 2001.

[25] O. Winther. Bayesian Mean Field Algorithms for
Neural Networks and Gaussian Processes. PhD thesis,
University of Copenhagen, CONNECT, The Niels Bohr
Institute, 1998.

[26] Y. Yang. A study on thresholding strategies for text
categorization. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
137–145, 2001.

[27] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 42–49, 1999.

APPENDIX

A. ON THE CHOICE OF PARAMETERS

A.1 Likelihood model
MacKay[12] has suggested the evidence framework for model

selection. Here, we calculate the evidence on the training

Table 6: Micro-/Macro-avg F1 (MaxF1 thresholds)
and Avg log-evidence on Reuters-21578 for different
likelihood models, using Bayesian online perceptron.

Micro-/Macro-avg F1 Avg log-evidence
Logit 86.48 / 52.75 -45.02
Probit 86.69 / 52.16 -34.32
Flip 85.94 / 53.00 -368.8

Table 7: Micro-/Macro-avg F1 (MaxF1 thresholds)
and Avg log-evidence on Reuters-21578 for different
passes over the training data, using Bayesian online
perceptron.

Passes Micro-/Macro-avg F1 Avg log-evidence
1 87.08 / 52.87 -35.56
2 86.92 / 52.63 -34.36
3 86.69 / 52.16 -34.32
4 86.62 / 52.75 -34.54
5 85.22 / 46.93 -34.69

data using the final posterior for a:

p(Dm) =
m�

t=1

〈p(yt|xt, a)〉m .

Table 6 illustrates this for selecting the likelihood mea-
sure for the text classification task, using the Bayesian on-
line perceptron. In the table, the probit model follows the
formulation in section 3.1 with σ0 = 0.5, logit model is esti-
mated by the probit model with σ0 = 1.6474[2], and the flip
noise model is as described in section 4.2. Although their
F1 averages are similar, the evidences show that the probit
model with σ0 = 0.5 is a more likely model. The small evi-
dence for the flip noise model is because much information
is lost through the threshold function Θ.

A.2 Effects of multiple passes over data
Using the evidence measure defined in section A.1, Table

7 illustrates the effects of different number of passes over
training data for Bayesian online perceptron. Treating the
number of passes as a parameter for the algorithm, we see
that having 3 passes over the data gives the highest average
evidence, although there is no significant difference between
2, 3, or 4 passes. Similar results hold for the Gaussian pro-
cess for the 3 different kernels. Hence, in section 4.1, we
choose to use 3 passes for all the Bayesian algorithms.

A.3 Jitter term
The addition of the jitter term 10−4δij (where δij = 1

if i = j, and 0 otherwise) for Gaussian process for classi-
fication is recommended by Neal[14]. This term improves
the conditioning of the matrix computations while having
a small effect on the model. From our preliminary exper-
iments, without the jitter term, the matrix operations in
Bayesian online Gaussian process become ill-conditioned.

A.4 Sizes of the basis vectors sets
The sizes of the sets of basis vectors for GP in section 4.1

are limited to less than or equal to the number of features
selected. This is because, as noted by Csató & Opper[3],
for a feature space of finite dimension M , no more than M

basis vectors are needed, due to linear dependence.

