
Automating Survey Coding by

Multiclass Text Categorization Techniques

Daniela Giorgetti
Istituto di Linguistica Computazionale

Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

E-mail: daniela.giorgetti@ilc.cnr.it

Fabrizio Sebastiani
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

E-mail: fabrizio.sebastiani@isti.cnr.it

Abstract

Survey coding is the task of assigning a symbolic code from a predefined set of such codes
to the answer given in response to an open-ended question in a questionnaire (aka survey).
This task is usually carried out in order to group respondents according to a predefined
scheme based on their answers. Survey coding has several applications, especially in the social
sciences, ranging from the simple classification of respondents to the extraction of statistics
on political opinions, health and lifestyle habits, customer satisfaction, brand fidelity, and
patient satisfaction.

Survey coding is a difficult task, since the code that should be attributed to a respondent
based on the answer she has given is a matter of subjective judgment, and thus requires
expertise. It is thus unsurprising that this task has traditionally been performed manually, by
trained coders. Some attempts have been made at automating this task, most of them based
on detecting the similarity between the answer and textual descriptions of the meanings of
the candidate codes.

We take a radically new stand, and formulate the problem of automated survey coding as
a text categorization problem, i.e. as the problem of learning, by means of supervised machine
learning techniques, a model of the association between answers and codes from a training set
of pre-coded answers, and applying the resulting model to the classification of new answers. In
this paper we experiment with two different learning techniques, one based on näıve Bayesian
classification and the other one based on multiclass support vector machines, and test the
resulting framework on a corpus of social surveys. The results we have obtained significantly
outperform the results achieved by previous automated survey coding approaches.

1 Introduction

Survey coding is the task of assigning a symbolic code from a predefined set of such codes to
a textual expression representing the answer given in response to an open-ended question in a
questionnaire (aka survey). By open-ended we mean a question that requires or allows an answer
consisting of free text; open-ended questions are the alternative to multiple-choice questions, which
instead require the answer to be selected from a predefined set1.

1In this paper we will only deal with text in written form. The implications of coding survey material in audio
form are discussed in Section 6.
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Survey coding is usually carried out in order to classify responses (and respondents) into a
category scheme, thus superimposing a structure on what would otherwise be a totally unstruc-
tured corpus of different responses. Survey coding has several applications, especially in the social
sciences, where the classification of respondents is functional to the extraction of statistics on
political opinions, health and lifestyle habits, customer satisfaction, brand fidelity, and patient
satisfaction.

As an example, in 1996 interviewers asked (among many others) the following question to a
carefully chosen sample of 1370 subjects, in the framework of the General Social Survey [7] carried
out by the US National Opinion Research Center (NORC)2:

Within the past month, think about the last time you felt really angry, irritated
or annoyed. Could you describe in a couple of sentences what made you feel
that way - what the situation was?

Professional coders were then asked to classify the answers in exactly one among the following
categories, each consisting of a code and a short explicatory caption:

ANGRYWRK: Situation involved work
ANGRYFAM: Situation involved family
ANGRYGVT: Situation involved government or government officials
WRK&FAM: Situation involved both work and family
WRK&GVT: Situation involved both work and government
FAM&GVT: Situation involved both family and government
OTHER: Situation did not fit the above categories

Answers included for example3:

trying to teach my son something and he was being stubborn and wouldn’t listen
to me i got angry at him

or

my wife went shopping & spent too much on a dress & it made me feel angry

which coders classified under the ANGRYFAM header.
Survey coding is a difficult task, since the code that should be attributed to an answer is a

matter of subjective interpretation, and thus requires expertise. For instance, different coders,
especially if little trained, might have different opinions as whether the answer

when people in authorities arent treating people right

should be classified under ANGRYGVT, or ANGRYWRK, or WRK&GVT, or even under OTHER: by
“authorities”, did the respondent only refer to authorities in government, or did she also include
hierarchically superordinate colleagues at work? or did she also include authorities in public
institutions other than government?

Given its difficulty, it is thus unsurprising that this task has traditionally been performed man-
ually, by professional coders. Survey coding is thus also an expensive task, and this is the reason
why social scientists (or other professionals in charge of designing and administering surveys) tend
to avoid including too many open-ended questions in their surveys, and tend to rely more on the
less expensive multiple-choice questions, which by definition do not require a coding phase, but
on the other hand strictly limit the respondents’ possible answers.

Some attempts have been made in the past at automating the survey coding task. Most of them
have exploited simple techniques from the tradition of text retrieval, for matching (or detecting the

2http://www.norc.uchicago.edu/
3Actually, rather than from the real answers, NORC coders work from typewritten versions of the handwritten

notes taken by the interviewers. As a consequence most “answers” are shorthands, and are thus, from a syntactic
point of view, ill-formed sentences.
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similarity between) the answer and textual descriptions of the meanings of the candidate codes [24].
In this paper we take a radically new stand, and formulate the problem of automated survey
coding as a (multiclass) text categorization problem, i.e. as the problem of learning, by means
of supervised learning techniques, a model of the association between answers and codes from a
training set of manually pre-coded answers, and applying the resulting model to the classification
of new answers into exactly one of the predefined codes. In this paper we experiment with two
different supervised learning techniques (one based on näıve Bayesian classification [16, 19], and
another based on multiclass support vector machines [11]) and test the resulting framework on a
corpus of social surveys conducted by NORC. The results we obtain significantly outperform the
results achieved by previous automated survey coding approaches.

This paper is structured as follows. Section 2 introduces survey coding, and reviews related
work attempting to automate this task. Section 3 gives a brief introduction to text categorization,
its methodology and its main techniques. In Section 4 we describe how the survey coding task
can be framed as a multiclass text categorization problem, and describe how the tools outlined
in Section 3 can be effectively used to this end. Section 5 illustrates the experiments we have
performed in the application of näıve Bayesian classification and support vector machines to the
problem of coding a corpus of social surveys collected by NORC. Section 6 concludes, commenting
our results and discussing possible avenues for further research.

2 Survey coding and its automation

From a general point of view, survey analysis shares many aspects with the more general frame-
work of text analysis for the social sciences, whereby quantitative methods (i.e. requiring some
measurement of frequency) and/or qualitative methods (i.e. not requiring any such measurement)
are applied to the study of text corpora representative of a sample of a given population, in order
to infer properties of the population itself. In [1] Alexa describes the various issues involved in
the computer-assisted analysis of text for the social sciences, while in [2] Alexa and Züll review
commercial and research software packages designed for these tasks. In this paper we will not
deal with the general problem of text analysis for the social sciences (which involves phases such
as text import, export, management, and exploration, plus dictionary and classification scheme
construction), but will just focus on the coding task of the survey analysis process.

Survey coding may be viewed as the task of identifying common meaningful concepts across
different responses to the same set of questions. This task may come in two variants, depending
whether the concepts sought are known in advance (in which case the task really consists in
checking whether a given concept is present or not in the text under analysis) or not (in which
case novel, unforeseen concepts may be “discovered” in the text being analyzed). In this paper
we will concentrate on the former variant, which is the most common for the simple reason that
surveys are usually run with a clear purpose, i.e. with a clear set of previously identified concepts
whose presence in the text corpus must be assessed or measured in some way.

The process of mapping responses into codes is both slow and expensive, since a lot of manual
effort by different professional figures is involved. For example, NORC interviewers take hand-
written notes of the answers returned during the interview, and typists produce a typewritten text
from these notes at a later stage; this text is then analyzed by professional coders, who perform the
final coding task. Yet another drawback is that the process is likely to produce faulty encodings,
as there are several potential sources of error: interviewers may misunderstand the answers or
misrepresent them by their notes, typists may misread or misunderstand the handwritten notes
or introduce further typing errors, and coders may misinterpret the meaning either of the answers
or of the codes. Our automated approach currently deals only with the last phase, i.e. coding
transcript data, thus ignoring the errors possibly introduced in the previous steps; an even better
approach might be to code “first-hand data”, i.e. data automatically transcribed directly from
speech (see Section 6 for a discussion).

A further problem in survey coding is the so-called inter-coder agreement problem, i.e. the
fact that different coders may classify the same data in different ways simply because they have
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different opinions as to the meaning of the answer and/or the code. Note that this problem does
not only affect manually performed survey coding, since we may also expect different automated
methods to differ in their decisions4.

Given that text analysis for the social sciences is an important issue, several software packages
that address it have been developed. However, they are not usually tailored for the specific
task of survey analysis, and the solutions that they provide for the survey coding task are still
unsatisfactory. Many of these software packages (see [2] for a review) mostly concentrate on helping
coders in coding their data manually, and in visualizing them in several convenient ways. A few of
these packages instead do perform automatic coding, by relying mainly on specialized dictionaries
(or rules). This means that text fragments are automatically assigned to a specific category if
and only if they contain words matching those in the dictionary relevant to the category. One
of the disadvantages of this approach is that dictionaries have to be created before the coding
process begins, i.e. when data is still totally unknown; this approach is thus extremely static. The
second drawback is that specialized dictionaries need to be developed, one for each category of
interest; this requires the intervention of expert personnel, who is then responsible for deciding
which words, if present (either alone or in combination) or absent in an answer, should trigger
the attribution of the code to the answer. The same expert personnel must re-intervene if a new
category is added to the scheme, since a dictionary must be created for the new category, and the
dictionaries for the old categories need to be updated in order to avoid “capturing” the answers
that are instead to be filed under the newly introduced category.

The scientific literature on automating survey coding is scarce. Dillon [8] reports doing “au-
tomatic classification” of surveys, but what he actually does is grouping questions (and not re-
sponses, or respondents, as we do) into groups according to similarity; also, he does not start
from a predefined set of groups, but generates the groups from scratch, which means that he
uses unsupervised learning (i.e. clustering), and not supervised learning as we instead do. A few
other researchers (e.g. [4, 15, 25]) have concentrated on the related issue of grading responses to
open-ended questions, like those answered by students in their school essays. However, this task
deals with concerns very different from those addressed in survey coding, since student essays
have to be graded according to quality or merit, while surveys have to be coded according to
topic-relatedness.

The approach that is closest in spirit to ours is probably the dictionary-based approach as it is
described in Viechnicki’s work [24]. In this paper responses to questions from NORC General Social
Survey are classified by means of a set of codes predefined by NORC social scientists. Viechnicki
proposes two alternative approaches. In the first one, words that characterize a given category are
combined by means of Boolean operators, and the answer is classified under the category whose
Boolean description it matches. The second method is instead based on computing the similarity
between two weighted vectors of words extracted from the answer and from a textual explicatory
caption of the code, and choosing the code with the highest similarity score. Similarly, Macchia
and Murgia [18] present a dictionary-based automated approach in which the answer is assigned
a unique code if there is an exact match with phrases belonging to a previously defined dictionary
associated with the code, or is assigned a “best code” if the match is partial. These approaches
have the typical drawback of dictionary-based methods, which need a dictionary to be manually
developed before the actual coding step takes place, and to be manually updated as a result of
changes in the structure and/or semantics of the coding scheme.

Our approach to survey coding has several advantages with respect to the dictionary-based
approach. Firstly, in our learning-based approach the manual effort is directed towards the manual
coding of a small training set of answers, and not towards the creation of specialized dictionaries.
This is advantageous, as it is easier to manually classify a set of documents than to build and tune
a dictionary of words that trigger the attribution of the code, for the simple fact that it is easier
to characterize a concept extensionally (i.e. to select instances of it) than intensionally (i.e. to
describe the concept in words, or to describe a procedure for recognizing its instances). Secondly,

4Inter-indexer inconsistency is a similar phenomenon well-known in information retrieval [5]: when two human
experts decide whether to index document dj with index term ci, they may disagree, and this in fact happens with
relatively high frequency.
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our approach is solidly grounded in machine learning theory, and it can leverage on a wealth of
results and techniques developed within text categorization, a discipline which has been bursting
with activity in the last ten years (see e.g. [21]) and has produced systems whose accuracy rivals
or exceeds that of a human (i.e. systems capable of generating codes that correlate with those
attributed by a coder at least as well as the codes attributed by two human coders correlate with
each other).

Of course, our approach is mostly useful for medium- to large-sized surveys, as in the learning
phase we need a hand-coded set of answers to train the inductive learner. This means that if a
survey is somewhat limited in the number of surveyed people, hand-coding the training set may
coincide with hand-coding the entire set. NORC’s surveys are examples of relatively large-sized
surveys, since 40,933 interviews have been completed in the years from 1972 to 2000, and since
the same survey (e.g. the General Social Survey mentioned in Section 1) is administered from year
to year, with many questions being asked unmodified year after year.

3 A short introduction to text categorization

We now turn to a brief introduction to text categorization, since this will be the main tool we will
adopt to tackle the survey coding task.

Text categorization (also known as text classification) is the task of approximating the unknown
target function Φ : D×C → {T, F} (that describes how documents ought to be classified) by means
of a function Φ̂ : D×C → {T, F} called the classifier, where C = {c1, . . . , c|C|} is a predefined set of
thematic categories and D is a domain of documents. If Φ(dj , ci) = T , then dj is called a positive
example (or a member) of ci, while if Φ(dj , ci) = F it is called a negative example of ci. The
categories are just symbolic labels, and no additional knowledge (of a procedural or declarative
nature) of their meaning is usually available. It is usually the case that no metadata (such as e.g.
publication date, document type, publication source) are available either; therefore, classification
must be accomplished only on the basis of knowledge extracted from the documents themselves.

Text categorization is a subjective task: when two experts (human or artificial) decide whether
to classify document dj under category ci, they may disagree, and this in fact happens with
relatively high frequency. A news article on George W. Bush attending a Texas Rangers game
could be filed under Politics, or under Sport, or under both, or even under neither, depending on
the subjective judgment of the expert.

Depending on the application, it might be the case that exactly one ci ∈ C must be assigned
to each dj ∈ D, or that any number 0 ≤ nj ≤ |C| of categories may be assigned to each dj ∈ D.
The former case is usually dubbed the binary case or the multiclass case, depending on whether
|C| = 2 or |C| > 2, respectively. Since the |C| > 2 case will be the object of interest in this paper,
from here on when speaking of TC we will actually mean multiclass TC5.

We can roughly distinguish three different phases in the life cycle of a TC system: document in-
dexing, classifier learning, and classifier evaluation. The three following paragraphs are devoted to
these three phases, respectively; for a more detailed treatment see Sections 5, 6 and 7, respectively,
of [21].

3.1 Document indexing

Document indexing denotes the activity of mapping a document dj into a compact representation
of its content that can be directly interpreted (i) by a classifier-building algorithm and (ii) by a
classifier, once it has been built. The document indexing methods usually employed in TC are
borrowed from information retrieval (IR), where a text dj is typically represented as a vector of
term weights �dj = 〈w1j , . . . , w|T |j〉. Here, T is the dictionary, i.e. the set of terms (also known
as features) that occur at least once in at least α documents, and 0 ≤ wkj ≤ 1 quantifies the
importance of tk in characterizing the semantics of dj . Typical values of α are between 1 and 5.

5For strange reasons that we will not discuss here, multiclass TC is sometimes also referred to as single-label
TC, which is admittedly confusing . . .
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An indexing method is characterized by (i) a definition of what a term is, and (ii) a method to
compute term weights. Concerning (i), the most frequent choice is to identify terms either with
the words occurring in the documents (with the exception of stop words, i.e. topic-neutral words
such as articles and prepositions, which are eliminated in a pre-processing phase), or with their
stems (i.e. their morphological roots, obtained by applying a stemming algorithm). Concerning
(ii), either statistical or probabilistic techniques are used to compute terms weights, the former
being the most common option. One popular class of statistical term weighting functions is tf ∗idf
(see e.g. [20]), where two intuitions are at play: (a) the more frequently tk occurs in dj , the more
important for dj it is (the term frequency intuition); (b) the more documents tk occurs in, the
less discriminating it is, i.e. the smaller its contribution is in characterizing the semantics of a
document in which it occurs (the inverse document frequency intuition). Weights computed by
tf ∗ idf techniques are often normalized so as to contrast the tendency of tf ∗ idf to emphasize
long documents.

In TC, unlike in IR, a dimensionality reduction phase is often applied so as to reduce the size
of the document representations from T to a much smaller, predefined number. This has both
the effect of reducing overfitting (i.e. the tendency of the classifier to better classify the data it
has been trained on than new unseen data), and to make the problem more manageable for the
learning method, since many such methods are known not to scale well to high problem sizes.
Dimensionality reduction often takes the form of feature selection: each term is scored by means
of a scoring function that captures its degree of (positive, and sometimes also negative) correlation
with ci, and only the highest scoring terms are used for document representation.

3.2 Classifier learning

A text classifier for categories C = {c1, . . . , c|C|} is automatically generated by a general inductive
process (the learner) which, by observing the characteristics of a set of documents preclassified
under C, gleans the characteristics that a new unseen document should have in order to belong to
a generic category ci ∈ C. In order to build classifiers for C, one thus needs a labelled corpus Ω
of documents such that the value of Φ(dj , ci) is known for every 〈dj , ci〉 ∈ Ω× C. In experimental
TC it is customary to partition Ω into three disjoint sets Tr (the training set), V a (the validation
set), and Te (the test set). The training set consists of documents the learner “observes” to
build up the classifier. The validation set is the set of documents the engineer uses to fine-tune
the classifier, e.g. choosing for a parameter p on which the classifier depends, the value that has
yielded the best effectiveness when evaluated on V a. The test set is used for the final evaluation of
classifier effectiveness. In both the validation and test phase, “evaluating the effectiveness” means
running the classifier on a set of preclassified documents (V a or Te) and checking the degree of
correspondence between the output of the classifier and the preassigned labels. This is called a
supervised learning activity, since learning is “supervised” by the information on the membership
of training documents in categories.

Several methods have been proposed in the text categorization literature for learning a text
classifier from training data (see [21] for a review), including probabilistic methods, regression
methods, decision tree and decision rule learners, neural networks, batch and incremental learners
of linear classifiers, example-based methods, support vector machines, genetic algorithms, hidden
Markov models, and classifier committees. Some of these methods generate binary-valued classi-
fiers of the required form Φ̂ : D × C → {T, F}, but some others generate real-valued functions of
the form CSV : D × C → [0, 1] (CSV standing for categorization status value). For these latter,
a set of thresholds τi needs to be determined (typically, by experimentation on a validation set)
allowing to turn real-valued CSVs into the final binary decisions.

3.3 Classifier evaluation

Training efficiency (i.e. average time required to build a classifier Φ̂ from a given corpus Ω), as well
as classification efficiency (i.e. average time required to classify a new document by means of Φ̂),
and effectiveness (i.e. average correctness of Φ̂’s classification behaviour) are different measures of
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success for a learner. However, effectiveness is usually considered the most important criterion,
since in most applications one is willing to trade training time and classification time for correct
decisions. Also, it is the most reliable one when it comes to comparing different learners, since
efficiency depends on too volatile parameters (e.g. different sw/hw platforms). As a result, we will
only measure the success of our approach in terms of effectiveness.

In multiclass TC, effectiveness is usually equated to accuracy, which is defined as the percentage
of classification decisions that are actually correct.

4 Automated survey coding by text categorization

In this section we describe our experiments with survey coding handled as a text categorization
task, i.e. as the task of automatically generating a classifier that automatically selects, from a set
of predefined codes, the correct code to attach to a given answer. In our survey coding context,
the set of all answers to a given question q play the role of the domain D, and the set of all possible
codes that may be attributed to an answer to question q play the role of the set of categories C
(coding the answers to different questions thus corresponds to different TC tasks).

The input to the learners (and to the classifiers, once they have been built), consists of an
answer dj represented as a vector of term weights �dj = 〈w1j , . . . , w|T |j〉; we use a value of 1 for
the α parameter (see section 3.1). Note that the fact that many of the answers in the corpus
are syntactically ill-formed (see examples in Section 1) makes this “bag of words” approach to
representation (i.e. the approach that just considers term occurrence and frequency of occurrence,
disregarding deeper syntactic and semantic aspects) even more appropriate: given that current
syntactic and semantic analysis techniques have not proven worthy (i.e. well-performing and robust
at the same time) in standard TC, where we usually deal with syntactically well-formed text, it
is easy to conjecture that they could hardly prove worthy here.

In this work we have run a series of experiments with two different classifier-learning methods.
The first learner we use is a probabilistic näıve Bayesian learner, as implemented in the Rainbow
package6. Probabilistic text classification methods assume that the data was generated by a
parametric model, and use the training set to estimate the parameters of this model. Bayes’
theorem allows to estimate from this model the probability that a given category has generated
the document to be classified; classification thus consists in selecting the category with the highest
probability. There are two well-known variants of this method, the multi-variate Bernoulli method
and the multinomial method [19]. In this paper we chose the latter, since in comparative text
classification experiments it performed better than the former [19].

The second learning method we use is a multiclass support vector machine (SVM) learner as
embodied in the MCSVM package7. SVMs attempt to learn a hyperplane in |T |-dimensional
space that separates the positive training examples of category ci from the negative ones with
the maximum possible margin, i.e. such that the minimal distance between the hyperplane and a
training example is maximum; results in computational learning theory indicate that this tends to
minimize the generalization error, i.e. the error of the resulting classifier on yet unseen examples.
SVMs were initially conceived for solving binary classification problems, and only recently they
have been adapted to multiclass classification.

Crammer and Singer describe in [6] an algorithmic implementation of multiclass SVMs based on
a notion of margin generalized to multiclass problems, which allows to train directly a multiclass
classifier (while in most of previous work the multiclass problem is decomposed into multiple
independent binary classification tasks [10]).

Regarding effectiveness, the text categorization literature has shown that näıve Bayesian ap-
proaches are, with respect to other learning methods, no more than average performers (see
e.g. [9, 13, 17, 27]). On the contrary, support vector machines are currently (together with

6Rainbow was implemented by Andrew McCallum and can be downloaded from
http://www.cs.cmu.edu/~mccallum/rainbow.

7MCSVM was implemented by Koby Crammer and Yoram Singer, and we were kindly provided with a pre-release
version of it.
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“boosting”-based classifier committees) the unsurpassed top performers in the TC field [9, 13].
The reason why we experiment with Rainbow is that we want to show that a text categorization
approach to survey coding is much more effective than the dictionary-based approach regardless
of the specific learning method adopted, i.e. that even with an average-performing learning method
our text categorization approach to survey coding can outperform the dictionary-based method.
Instead, the reason why we experiment with MCSVM is that we want to show what level of ef-
fectiveness this approach can achieve, once instantiated with a top-performing learning algorithm
8.

We have used a binary representation as input to Rainbow, and a non-binary one as input
to MCSVM. This is due to the fact that the probabilistic models upon which Rainbow is based
require binary inputs, while this is not the case for SVMs. In the binary representation, wkj

represents just presence or absence of term tk in answer dj . Our non-binary representation is
instead the tfidf function in its standard “ltc” variant [20], i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)
(1)

where #Tr(tk) denotes the number of answers in the training set Tr in which tk occurs at least α
times and

tf(tk, dj) =
{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise

where #(tk, dj) denotes the number of times tk occurs in answer dj . Weights obtained by Equa-
tion 1 are normalized by cosine normalization, yielding

wkj =
tfidf(tk, dj)√∑|T |
s=1 tfidf(ts, dj)2

(2)

In all the experiments discussed in this paper, stop words, punctuation, and numbers, have been
removed, and all letters have been converted to lowercase. No feature selection (see e.g. [21,
Section 5.1]) has been performed. The reason is that, as shown in extensive experiments by Brank
et al. [3], the effectiveness of SVMs is usually worsened by feature selection, irrespectively of the
feature selection algorithm used and of the chosen reduction factor (this is also independently
confirmed by the results of [23]), and the effectiveness of näıve Bayesian methods does not show
systematic patterns of improvement either.

5 Experiments

As already pointed out, our experiments have been carried out on data from NORC’s General
Social Survey. This survey, which is ongoing since 1972, aims at investigating how people assess
their physical and mental health, the balancing of security and civil liberties, external and internal
security threats, intergroup relations and cultural pluralism, religious congregations, etc. We deal
with three datasets (see Table 1) from the NORC General Social Survey administered in 1996.
Each of these datasets (here nicknamed angry at, angry why, and brkdhlp) consists of a set of
answers to a given question, plus their associated category codes manually chosen by NORC’s
professional coders from a predefined set of category codes9. The task consists in choosing exactly
one code for each answer.

8Note that there are no published results yet concerning the application to TC of multiclass SVMs, because
multiclass SVMs are a recent development, and because most TC applications are binary. The assumption that
multiclass SVMs would be a top performer once used in a multiclass TC context is based on the top performance
that multiclass SVMs have delivered in multiclass application contexts other than TC [6].

9The angry at and angry why datasets actually involve the same question, which deals with the description of
a situation that caused anger to the respondent; each answer was classified according to two different sets of codes,
one concerning the object of anger, the other concerning the cause of anger. Actually, angry why contains only a
subset of the answers contained in angry at, in the sense that NORC coders classified some of the answers only
according to the angry at set of codes. The brkdhlp dataset (called breakdown in [24]) consists of answers to the
question as to what source of help was used to deal with a nervous breakdown.
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Dataset Category # of instances

ANGRYFAM 275
ANGRYWRK 345
ANGRYGVT 74

angry at WRK&GVT 8
WRK&FAM 27
FAM&GVT 16
OTHER 625

total 1370

SELF 29
PREVENTED 36

angry why CRITICAL 88
DEMANDING 60
EXPECT 196
OTHER 51

total 460

FAMILY 57
FRIEND 33
GROUP 2

brkdhlp CLERGY 55
PSYCHIATRIST 56
AGENCY 16
OTHER 148

total 367

Table 1: Characteristics of the three datasets used in our experiments.

We have chosen these three datasets because they are the same datasets used in [24], which
means that we will be able to obtain a direct comparison between the effectiveness of Viech-
nicki’s method (which is an example of the dictionary-based approach to survey coding) and the
effectiveness of our supervised learning approach.

Note that all three datasets include a class OTHER. This consideration alone indicates that
these datasets are not “easy”, since

• the classifier cannot simply “take a guess” by picking “the least inappropriate” category,
since if all choices are sufficiently inappropriate, the category OTHER applies10;

• the category OTHER will typically be a very hard category to work with, since it will not
be characterized by a specific terminology, as is instead the case with categories that are
strongly characterized in a topical sense. The presence of a category OTHER in the category
set always tends to deteriorate the global performance of any text classifier.

For each dataset, the main steps we went through to run our experiments are the following:

1. preprocess the data in order to obtain a data format compatible with the learners (this had
to be repeated once for Rainbow and once for MCSVM, since the two systems require
different input formats);

2. partition the set of answers in each dataset in four random disjoint subsets of equal size;

3. run the learner to generate a classifier, using three of the four subsets as the training set and
the fourth as the test set;

4. run the classifier to classify the data in each test set of each dataset and evaluate the results.

In order to achieve better statistical significance, in all experiments steps 3 and 4 were repeated
four times, for all four possible choices of the test set. Each of the results we report is thus the

10This is confirmed by everybody’s experience with multiple-choice tests. No student likes to take a multiple-
choice test in which the last choice is always “None of the preceding answers apply”!
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Dictionary-Based [24] Supervised Learning

Vector Boolean Rainbow MCSVM

angry at 0.451 0.465 0.714 (+54%) 0.756 (+63%)

angry why 0.211 0.272 0.389 (+43%) 0.376 (+38%)

brkdhlp 0.646 0.747 0.653 (-13%) 0.746 (-0.13%)

Average 0.436 0.495 0.585 (+18%) 0.626 (+26%)

Std. Dev. 0.218 0.239 0.173 (-28%) 0.216 (-10%)

Table 2: Comparative accuracy results obtained on the angry at, angry why and brkdhlp datasets
using a Boolean and a vector-based method and using a näıve Bayesian and a multiclass SVM
TC method. The percentile improvements in accuracy and average accuracy, and the percentile
reductions in standard deviation, are reported with respect to the Boolean method, the best
dictionary-based method in [24]. Boldface indicates the best performance on the dataset.

result of averaging across four different experiments. We have computed the accuracy on the three
datasets both with Rainbow and with MCSVM; the results are reported in Table 2, where they
are compared with the accuracy obtained in [24] on the same datasets.

The first observation we can make is that the supervised learning approach to survey coding
significantly outperforms the dictionary-based approach: the improvements with respect to the
best-performing method reported in [24] are significant, a +18% on average for Rainbow and a
+26% for MCSVM. The improvement is especially noteworthy on the “non-obvious” datasets:
for instance, angry why appears to be a hard to characterize dataset, as shown by the poor
performance of the two dictionary-based methods, and on this dataset the supervised learning
methods improve up to +43% with respect to the best one. The angry at dataset looks somehow
“easier” than angry why, as witnessed by the fact that all four methods listed in Table 2 perform
better on angry at than on angry why. This might also be explained by the fact that, as it can
be seen from Table 1, it contains more data, since each category in angry at has 195 positive
examples on average, while this goes down to 76 for angry why. On the contrary, the brkdhlp
dataset seems easy to tackle by simple Boolean rules, as shown by the .747 accuracy figure of
the Boolean method; in this case Rainbow underperforms the Boolean method by 13%, while
MCSVM virtually delivers the same performance as the Boolean method.

Moreover, the supervised learning approach delivers a more stable performance across the three
datasets, since the reductions in standard deviation with respect to the same best-performing
method are very significant, a -28% for Rainbow and a -10% for MCSVM. These improvements
are even more significant once we remember that they are obtained by a method that is much
cheaper than the dictionary-based method in terms of expert human resources .

As anticipated in Section 4, the fact that improvements of this order of magnitude are obtained
even with a method, such as the näıve Bayesian technique implemented in Rainbow, which is
known as an average performer in the text categorization literature, bears witness to the superiority
of the supervised learning approach to survey coding.

The fact that multiclass SVMs, known top-performers in the machine learning literature (see
e.g. [6]), outperform Rainbow only by a very small margin, is more surprising, and might be
dependent on the data we experimented with. In fact, a possible explanation might be that the
vocabulary of the NORC corpora exhibits low internal stochastic dependence, hence approximating
the conditions under which Bayesian approaches are theoretically optimal.

6 Conclusion

We have shown that automatic coding of responses to open-ended survey questions may be posed
as a multiclass text categorization problem, and that text categorization techniques based on
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supervised learning may significantly outperform dictionary-based techniques, such as those used
in [24] that have been up to now the dominant approach to automated survey coding. Another
advantage of the supervised learning approach with respect to the dictionary-based approach,
which requires that the text classifiers be handcrafted (by a knowledge engineer and a social
scientist working together), is that the classifiers can be generated automatically from the training
data, with substantive savings in terms of expert human resources.

The effectiveness levels that text categorization techniques have achieved in our experiments
are far from being perfect, and also from being completely satisfactory. Although the results
obtained in our research are promising, we think that more research is needed for the automatic
approach to survey coding to clearly supersede the manual approach. There are several avenues for
further research. One of these, which we are currently working at, is simply to run experiments
on more survey data, in order to obtain results which are statistically more reliable. Another
possible line of research is to experiment with more satisfactory multiclass TC learners, in order
to improve upon the results of Rainbow and MCSVM.

In the future, we plan to combine automated survey coding by text categorization with speech
recognition, in order to allow the survey coding task to proceed directly from the audio recording of
the interview, since we believe that survey coding may be performed with much better effectiveness
only by using better quality input, i.e. more faithful representations of the answers. Proceeding
directly from the audio recording can eliminate the sources of noise mentioned in Section 2 (i.e.
the noise possibly introduced by interviewers and typists), and also makes for greater savings in
term of human resources, which means that the researchers who design the survey could afford
having more open-ended questions and less multiple-choice ones.

Although such a process requires to apply text categorization to noisy text (due to the current
performance of speech recognition software), we think that there are reasons for optimism, since
previous research in the optical character recognition field [12, 14] shows that effectiveness levels
comparable to those obtainable in the case of standard text may be achieved. Thus it is possible
that similar effectiveness patterns might result also in the case of noise introduced by speech
recognition.
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