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Abstract. In this paper a system for analysis and auto-
matic indexing of imaged documents for high-volume ap-
plications is described. This system, named STRETCH
(STorage and RETrieval by Content of imaged docu-
ments), is based on an Archiving and Retrieval Engine,
which overcomes the bottleneck of document profiling
bypassing some limitations of existing pre-defined in-
dexing schemes. The engine exploits a structured docu-
ment representation and can activate appropriate meth-
ods to characterise and automatically index heteroge-
neous documents with variable layout. The originality of
STRETCH lies principally in the possibility for unskilled
users to define the indexes relevant to the document do-
mains of their interest by simply presenting visual exam-
ples and applying reliable automatic information extrac-
tion methods (document classification, flexible reading
strategies) to index the documents automatically, thus
creating archives as desired. STRETCH offers ease of use
and application programming and the ability to dynam-
ically adapt to new types of documents. The system has
been tested in two applications in particular, one con-
cerning passive invoices and the other bank documents.
In these applications, several classes of documents are
involved. The indexing strategy first automatically clas-
sifies the document, thus avoiding pre-sorting, then lo-
cates and reads the information pertaining to the spe-
cific document class. Experimental results are encourag-
ing overall; in particular, document classification results
fulfill the requirements of high-volume applications . In-
tegration into production lines is under execution.

Keywords: Document classification – Decision tree –
MXY tree – Reading strategy

1 Introduction

In this paper we describe a method for the automatic
classification and indexing by content of imaged docu-
ments, implemented in an archiving and retrieval system
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developed within the Esprit project STRETCH (STor-
age and RETrieval by Content of imaged documents)1.
Several application fields (for instance, banking and in-
surance, corporate databases, cultural institutions, pub-
lic administration) require the storage and indexing of
huge volumes of documents in digital archives. More-
over, in several applications, specific pieces of informa-
tion must be extracted from the documents for data en-
try required by workflow procedures. The latter oper-
ation, traditionally manual and labour-intensive, is cur-
rently approached by introducing OCR software in many
high-volume applications.

It is usually rather easy to tune commercial OCR
software to read forms, i.e., documents which adhere
to one or a few specific models [22] where the informa-
tion can be located precisely. However, in several prac-
tical applications, it is necessary to process documents
with many different layouts, where information to be ex-
tracted is variable or located in different positions [5]. In
order to read the relevant information for automatic in-
dexing it is necessary to “understand” each document
layout to classify the document and select the appropri-
ate reading strategy. In this case document profiling is
much more complex and tuning even the most effective
commercial OCR/ICR is quite expensive. Manual pre-
sorting of documents into meaningful classes is the usual
compromise adopted to obtain the required accuracy.

Some applications do not require all document types
to be indexed; in this case document classification ac-
curacy is even more important to avoid processing a
conspicuous fraction of the documents. Therefore, the
major challenge of STRETCH in several applications is
to achieve accurate document classification, then to ap-
ply an appropriate and accurate reading strategy to the
fields to be employed for indexing. Only rejected docu-
ments need to be manually checked, greatly improving
the productivity of the document workflow.

The system designed and implemented in STRETCH
is based on an Archiving and Retrieval Engine, which
exploits a structured Object-Oriented document repre-

1 For details, see the project homepage at
http://www.aetnet.it/stretch/
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Fig. 1. STRETCH embedded in the
corporate workflow

sentation. The objects are enriched with appropriate
methods to locate and automatically extract informa-
tion to index heterogeneous documents with variable lay-
out. This representation is employed in particular by the
Document Processing Server which processes the docu-
ment images to classify and index each document. The
core technology employed consists of layout analysis and
classification, automatic field location, logo and tag iden-
tification, Intelligent Character Recognition (ICR). Af-
ter layout analysis, the document is classified according
to the user’s specification and information contents are
extracted from the relevant fields.

STRETCH can be integrated into current produc-
tion lines as a parallel line, without interfering with the
traditional workflow or other automated solutions (see
Fig. 1 for a general example concerning corporate work-
flow). Further integrations of the existing workflow man-
agement system with document processing modules can
increase the overall performance, as explored in the Vir-
tual Office project [15] with the integration of the Of-
ficeMAID System [3].

STRETCH has been tested in various domains that
are conspicuous examples of the application fields ad-
dressed, namely, an account payable archive, consist-
ing of invoices and related documents [1]; a document
archive for the Public Administration; and bank docu-
ments [2].

In this paper we describe in particular the document
processing core of our system, in terms of both the meth-
ods implemented to reach appropriate accuracy and the
architectural solution adopted to obtain an efficiency
compatible with high-volume application requirements.
The paper is organized as follows. In Sect. 2 we briefly
summarize the system architecture, introducing the Doc-
ument Processing Server and presenting some implemen-
tation details adopted to increase efficiency. In Sect. 3 the
methods employed in the Document Processing Server to
perform document classification and document indexing
are described in detail. Section 4 presents some exper-

STRETCH Client

STRETCH Server
Document
Processing
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Maintenance
and Definition
Tool Server

Docu-Base

Document
Objects

Document
Images
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Fig. 2. Main STRETCH components and mutual relations

imental results concerning two typical real-world appli-
cation scenarios: passive invoice workflow and bank doc-
ument archives. Finally in Sect. 5 some conclusions are
drawn.

2 STRETCH architecture

From an architectural point of view, the system relies on
a networked client/server/database solution. The main
achievement consists in the development of an Archiving
and Retrieval Engine (ARE), capable of activating ap-
propriate methods to index, archive, and retrieve imaged
documents.

Components of both the “Client” and “Server”
implement functionalities to achieve system modu-
larity, distributed configuration, and scalability. The
“Database” layer, called Docu-Base in STRETCH, in-
cludes the components to store persistent data. The main
components of the STRETCH architecture are shown in
Fig. 2. A standard Corba middleware [19] links all the
components.

The STRETCH Client is the user interface; it is im-
plemented in Java and may have, of course, multiple dis-
tributed instances. A main screen, the GUI Manager,
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provides access to specific screens: Archive Client, to
select groups of images and submit them as indexing-
archiving batches, whose performance can be monitored;
Retrieval Client, to perform relational queries on any in-
formation field and to analyze their results; and Docu-
ment Visual Objects, to browse and edit corresponding
documents in the Server, from either retrieved or cur-
rently processed documents (an example is presented in
Fig. 9).

The Server layer is made of three main components
(Fig. 2). The STRETCH Server presents the ARE in-
terface to STRETCH Client instances, dispatches their
requests to the other server components and to the Docu-
Base, also enforcing the scheduling strategies for paral-
lel processing. The Document Processing Server (DPS)
carries out the document processing for automatic index-
ing employing layout classification and flexible reading
strategies (Sect. 3). The last server component, Mainte-
nance and Definition Tool Server, takes care of maintain-
ing the system configuration and domain-related reading
strategies. In addition, users can define new document
examples and update the selected domain by a learning
process, involving both layout classification and reading
strategies.

The Docu-Base, linked to a relational database en-
gine, archives and retrieves information extracted from
documents with related images. Moving compressed im-
age files reduces the communication load.

The STRETCH architecture employs a three-tiered
layering of current software technology,providing the fol-
lowing advantages:
Modularity: a STRETCH Server can accept client ses-
sions with only a subset of instantiated components.
Openness: external components may use their own client
to interface with the STRETCH Server; similarly the re-
lational database and image archive can be replaced.
Scalability: document processing, the most compute-in-
tensive function, can achieve increasing performance and
robustness through DPS replication on parallel or dis-
tributed machines (as detailed below).

The Server includes both Java and native compo-
nents, the latter used for image processing and OCR
functions. Despite Corba’s possibility to link components
defined with different languages, Java has been employed
to define all the front-end Server interfaces, while the
pieces of native code are loaded and executed as internal
resources for document processing. In fact, with its dy-
namic class loading and portability, Java has also proven
to be a good “wrapper” for native resources, and is eas-
ily changed in case of porting to different platforms. The
current STRETCH Server platform is Windows NT-4.

2.1 Concurrent document processing

The scalability in document processing has been enforced
by allowing DPS replication on the same server machine
and/or on different ones.

On archiving, concurrent threads are started by the
STRETCH Client; they result in corresponding server
threads, one for each document to be processed. Each

archiving thread in the STRETCH Server waits until
there is at least one DPS instance available and performs
a synchronized (sequential by mutual exclusion) call to
its image processing method. During an archiving batch,
all the DPS instances are kept busy until the batch is
finished. Thanks to this simple but effective dynamic
load balancing, every DPS instance receives an operation
load proportional to its processing capability, thus well
exploiting any processor configuration, including hetero-
geneous machines. At the end of image processing, the
archiving thread sends the information extracted to the
Docu-Base archive.

The execution of each DPS in a separate Java Virtual
Machine, even when running on the same physical ma-
chine, allows effective resource separation and exploita-
tion of parallel machines.

This approach has been benchmarked on a cluster of
heterogeneous machines (Sect. 4.3).

3 Document processing server methods

Any document can be described with respect to physical
and logical aspects. The physical structure of a docu-
ment, i.e., the layout structure, is the collection of phys-
ical objects obtained by the segmentation of the docu-
ment image. Similarly, the logical structure of a docu-
ment is obtained by the repeated division of the docu-
ment content into increasingly smaller parts (logical ob-
jects), on the basis of the human understanding of the
“meaning” of the content.

Documents can be clustered with respect to their
subject or use, according to the users’ view: for example,
journals, tax forms, business letters, invoices, cheques,
and generic bank documents can be regarded as differ-
ent domains. Since the documents of a domain are used
for similar or related functions, they are characterized
by some logical and physical similarities. Documents be-
longing to a given domain can be further characterized
by different layout or logical structures. Thus, documents
which feature physical similarities can be clustered into
classes.

Document classification and indexing is performed in
DPS by a cascade execution of three methods (Fig. 3):

– A top-down segmentation method (Sect. 3.1) aimed
at extracting a hierarchical description of the input
document.

– A physical classification of the document’s layout is
performed by comparing its MXY tree representa-
tion with pre-stored representations of documents of
known class. In order to have an efficient comparison
an appropriate decision tree (the Document Decision
Tree, DDT), is taken into account (Sect. 3.2).

– After the physical classification step, it is possible to
activate an automated indexing strategy (Sect. 3.3).
The strategy aims at applying a proper reading pro-
cedure to extract the information pertaining to the
document class. Since the strategy is based on the
location of appropriate tags (keywords) and logos in
class-dependent areas, the application of the strategy
allows us to obtain an implicit logical classification
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Fig. 4. A portion of the MXY tree of a page. Dotted lines point out to images of regions described in the corresponding nodes.
VL (HL) denotes Vertical (Horizontal) cutting Line; HS denotes Horizontal cutting Space. Nodes with a line indicate leaves
corresponding to line separators

that can confirm the physical classification made by
the DDT.

Both DDT and indexing strategies are learnt by exam-
ples during an offline training phase. In particular index-
ing strategies can be tuned either to read information
of a given class or to read information of more classes,
automatically discriminating among them on the basis
of their content (OCR, logo). By training both class-
dependent and class-independent strategies it is possi-
ble to take advantage of all the information provided by
the DDT-based classification. Three alternative results
can be provided by the DDT-based classifier: (i) If the
document is classified with enough confidence, a class-
dependent strategy is activated; (ii) in case of rejection,
a general class-independent strategy can be applied; and
(iii) when n top candidate classes have higher recogni-
tion confidence, then more strategies, corresponding to
the n top candidate classes, can be applied in sequence,
till the reading operation is successfully completed. In
all the cases when a reading strategy is activated, the
strategy can either provide all the required information
or reject the document for further manual processing.

3.1 Document layout analysis: modified X-Y tree

The X-Y tree [17,18] is a top-down data-driven method
for page layout analysis. The basic assumption behind
the X-Y tree segmentation is the fact that structured el-
ements of the page (columns, paragraphs, titles, figures,
lines of text, printed symbols) are generally laid out in
rectangular blocks. Furthermore, the blocks can almost
always be divided into groups in such a way that blocks
that are adjacent to one another within a group have
one dimension in common [17]. The Modified X-Y tree
(MXY tree) [6] is an improvement of the X-Y tree ap-
proach where the splitting of regions into sub-parts can
be obtained by means of cuts along horizontal and verti-
cal separators (mostly lines), in addition to the classical
cuts along white spaces. Each node of an MXY tree is
associated either to a region of the page or to a sepa-
rator. The MXY tree is well suited to the segmentation
and the subsequent physical representation of documents
with complex layout containing some lines as separators.
Notable examples of these documents are invoices and
bank documents.
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Fig. 5. Definition of regions RL and RR for lines. Line L1
cannot be used as a cutting line, since its RL rectangle is not
white

In the basic X-Y tree algorithm the root of the tree
is associated to the whole document which is then split
into regions separated by white horizontal spaces. Each
region corresponds to a node, a child of the root of the
tree, and the algorithm is recursively applied on each
subregion. Horizontal and vertical white spaces are al-
ternatively used to further divide a region. The splitting
process is stopped when a cutting space (either horizon-
tal or vertical) cannot be found or when the area of the
current region is smaller than the pre-defined resolution
of the algorithm.

When dealing with documents containing lines, the
X-Y tree decomposition algorithm can fail in splitting
regions contained inside regions delimited by lines. This
problem can be overcome by dealing with bottom-up seg-
mentation algorithms (e.g., RLSA algorithm). However,
in the latter case we lose the hierarchical description of
the document that is very useful for document classifica-
tion tasks. In order to improve segmentation capabilities
of the classical X-Y tree approach, the MXY tree algo-
rithm extracts the structure of the document by splitting
along either white spaces or lines. Let Ch be the average
height of characters in the region to be split. A line, L,
is used to split the region R if:

– the line is longer than a given threshold (typically
20–25% of the region’s width);

– the two rectangles RL and RR are white, where RL
(RR) is the rectangle of height 2 · Ch covering the
area from the left (right) extrema of L to the left
(right) border of R (Fig. 5).

The first condition avoids cutting along short lines at
the first steps of the decomposition, whereas the second
one ensures that only lines actually used as separators
are taken into account. If both a line and a space can be
used to split a region, the line has priority over the space.
Figure 4 supplies an example of MXY tree generation.

When using the X-Y tree decomposition for noisy
images an uneven segmentation can occur. These errors
are either due to extraneous elements in the page (e.g.,
salt-and-pepper noise) or to broken objects. In addition,
seriously skewed images can significantly reduce the use-
fulness of such an approach. In order to face these prob-
lems we followed various approaches. First, connected
components smaller than the average size of characters

in the document are removed from the image before ap-
plying the MXY decomposition. In this way some broken
characters and dots from ’i’s and ’j’s are lost. However,
since the MXY tree is used for document classification
(Sect. 3.2) and not for field location (Sect. 3.3) this prob-
lem is less critical, since differences in MXY trees are
managed by the Decision Tree. The line location algo-
rithm (based on RLSA algorithm) is designed so as to
be able to locate slightly skewed and broken lines. More-
over, documents taken into account have a reduced skew.

For the task of document classification each node of
the MXY tree contains a vector with the following infor-
mation:
1. a flag indicating whether the father has used a line

or a space during region splitting;
2. four values describing the position of the sub-region

associated with the node;
3. the average grey level of the sub-region associated

with the node.
These values are used by the decision tree in order to
compute the similarity among nodes of different MXY
trees.

3.2 Document classification

Decision trees have been widely used for pattern classi-
fication (e.g., [20]). In a decision tree the classification is
carried out in an iterative process. During this process
the set of classes the pattern can belong to, is restricted,
till a single class is left.

In [8,9] a decision tree (the so-called Geometric Tree,
GTree) is used to model the knowledge about more than
one document layout by describing a hierarchy for pos-
sible logical object arrangements. Similarly to XY trees
the documents are represented by a set of recursive cuts
performed over white spaces. Each example is a leaf of
the GTree and intermediate nodes are recursively in-
serted to gather cuts, which are shared by different doc-
uments. Cuts shared by many documents are stored in
nodes close to the root, whereas document-specific cuts
are stored in nodes close to the leaves. In the classifica-
tion process a path, leading from the root node to a leaf,
is followed. At each step the input document is compared
with the cuts stored in the children of the last node in-
serted in the path. This approach was tested on business
letters without taking lines into account.

The extension of the GTree approach to documents
containing lines (such as invoices and bank documents)
is based on two factors: first, the document is split also
along lines; second, the recursive splitting of the doc-
ument is done explicitly during a segmentation phase,
instead of being searched on the document image during
labeling. To this purpose we introduce a decision tree
(Document Decision Tree, DDT) whose nodes contain
MXY trees. Both DDT building and traversal are based
on an appropriate matching among sub-trees extracted
from MXY trees corresponding to training samples and
to the incoming document.

In the following we briefly introduce the formalism
needed to describe our framework. The children of every
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Fig. 6. Example of DDT. On the left, two documents with
the corresponding MXY trees. On the right, the associated
DDT containing the MXY trees of training samples in its
leaves

node are ordered. Two nodes match if they have equal la-
bel, and all nodes of the trees are supposed to be labeled
with a vector of variables (defined in Sect. 3.1) assuming
a set of discrete values. In order to apply matching crite-
ria between nodes, either the labels must be quantized or
a flexible match between labels, based on the Euclidean
distance, must be taken into account. Th matches Tk if
their roots match, the ith child of the root of Th matches
the ith child of the root of Tk (where i varies between 0
and the number of children of the root of Th) and this
recursively holds for each node of Th and Tk. A common
sub-tree between two trees T1, T2 is a tree matching both
a sub-tree of T1 and a sub-tree of T2.

Definition 1 CT (T1, T2) is the set of all common sub-
trees between the trees T1, T2.

Definition 2 CTN(T1, T2, Ni, Nj) ∈ CT (T1, T2) is the
set of all common sub-trees between the trees T1, T2 which
include both the node Ni of T1 and the node Nj of T2.

For example CTN(T1, T2, root(T1), root(T2)) is the
empty set if the root node of T1 and the root node of
T2 have two different labels.

Definition 3 The maximum common sub-tree contain-
ing a node Ni of T1 and a node Nj of T2 is a tree
in CTN(T1, T2, Ni, Nj) with the maximum number of
nodes. We indicate this tree as SM(T1, T2, Ni, Nj).

We can generalize these definitions to deal with more
than two trees. Let CTN(T1, . . . , Tn, Ni1 , . . . , Nin) be
the set of common sub-trees among the trees T1, . . . , Tn,
containing the nodes Ni1 of T1, . . . , Nin of Tn. It can
be shown that the CTN among n trees is the intersec-
tion among the CTN of each couple of trees. The max-
imum common sub-tree among n trees SM(T1, . . . , Tn,
Ni1 , . . . , Nin) is the tree T ∈ CTN(T1, . . . , Tn, Ni1 , . . . ,
Nin) with maximum number of nodes. We indicate
with SMR(T1, . . . , Tn) = SM(T1, . . . , Tn, root(T1), . . . ,
root(Tn)) the maximum common sub-tree among the
trees T1, . . . , Tn, containing the root nodes of T1, . . . , Tn.

Definition 4 A Document Decision Tree (DDT ) is a
tree structure with the following features:

current node

new leaf

new leaf

new current node

 node splitted 

Inserting Descending Splitting

Starting DDT

Fig. 7. The three admitted operations which are performed
over document decision tree during the insertion of a new
example

1. in each node of the DDT a MXY tree is stored;
2. an MXY tree, representing one document instance,
is stored in each leaf of the DDT ;

3. if a node i of the DDT is the father of n nodes j1, . . . ,
jn, where the trees Tj1 , . . . , Tjn are stored, then in i
the tree SMR(Tj1 , . . . , Tjn

) is stored.
4. for each couple of trees T1, T2 stored inside nodes of
the DDT at level i, exists a node n at a level smaller
then i such as SMR(T1, T2) is stored in node n.

The DDT is a tree data structure, built in order to
perform an efficient MXY classification, which stores
the MXY trees of the example patterns. As in tradi-
tional decision trees, patterns sharing similar features
are pushed close in the decision tree, while dissimilar
patterns are driven apart. In our framework MXY trees
sharing large SMR are forced to stay close to each other
in the DDT , while trees sharing a small SMR are pushed
far away in the DDT hierarchy.

Learning phase. The DDT is built from the set of MXY
trees, composing the learning set, inserting one tree at
a time, and updating the DDT structure in order to
respect the definition of document decision tree (Defi-
nition 4). At the beginning the DDT is composed by a
single empty node. The first inserted document will be
stored inside the root node of the DDT . We denote with
NewXY the new MXY tree which must be inserted in
the DDT . Let Na be a node of DDT , Chi(a) be the ith
child of Na, and XY (Chi(a)) be the MXY tree stored
in Chi(a). Starting from the root of DDT a path on
DDT is followed until the right insertion point is found.
Let L be the last node of the path. At each step three
operations are admitted (Fig. 7):

1. Descending. If a child i exists such as:
SMR(NewXY, XY (Chi(L)) = XY (Chi(L)) then
the node Chi(L) is added to the path followed on the
DDT (L← XY (Chi(L))).

2. Inserting. If for each child i it holds that:
SMR(NewXY, XY (Chi(L)) = XY (L) then a new
child is added to L. The NewXY is stored in the
new child. This node is a new leaf of the DDT . The
insertion of the new XY tree terminates.
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3. Splitting. If there exists a child node Chi(L), such
that XY (L) is a proper sub-tree of
SMR(NewXY, XY (Chi(L)) and
SMR(NewXY, XY (Chi(L)) is a proper sub-tree of
XY (Chi(L)), then a new node is added as the ith
child of L where SMR(NewXY, XY (Chi(L))) is
stored. This new node has two children: the first one
is a new leaf where NewXY is stored and the second
one is the old ith child of L. The insertion of the new
XY tree terminates.

A single XY tree is taken into account at each step, till
all the learning set is inserted. If the descending opera-
tion is performed, then a node expressing all the needed
(at that level) information about the new example exists.
If the inserting operation is performed, then a node ex-
pressing any further information about the new example
cannot be found. If the splitting operation is performed,
then a node expressing further information about the
new example can be found, but that node does not con-
tain all the needed information.

Classification phase. During this phase, as in traditional
decision trees, an input document is associated with one
DDT leaf, which represents an instance of a document
inserted into the decision tree during the learning phase.
The input document belongs to the class of the document
stored in the selected leaf of the DDT . The classification
is performed by following a path from the root to a leaf.
The maximum number of steps is equal to the maximum
depth of the decision tree. At each step a new node is
added to the path. The selection of a child is performed
by a two-stage process:

– the similarities between the XY tree representing the
input document and the XY trees, stored in each
child of the last node of the path, are computed;

– the child storing the XY tree most similar to the
input document is selected.

When a leaf is reached the algorithm terminates. To in-
crease the system’s reliability, many paths can be fol-
lowed in parallel. In this case a list of classes, sorted by
their similarity with the input document, is obtained.
This ranked list allows us to start an iterative informa-
tion extraction procedure, by first applying the reading
strategy relevant to the top scoring candidate class, and,
in case of failure, by backtracking to the second top class,
and so on. Only very few classes have to be considered
(see Sect. 4).

Similarity criteria between trees. During the classifica-
tion phase a similarity function is needed to compare
MXY trees. We introduce the similarity function which
has been applied in the experiments and we discuss why
we think that this similarity function is more appropriate
than tree metrics to guide the DDT navigation. In [10–
12,21] techniques to construct a metric among trees are
shown. These algorithms cannot be successfully applied
to the navigation of decision trees because all these met-
rics are highly sensitive to the difference of dimension of
the trees.

During a generic step of the classification phase the
system compares the input XY tree to the XY trees
stored in the children of a decision tree node. Unfortu-
nately, the DDT construction technique above described
cannot guarantee that the numbers of nodes of the XY
trees, stored in the children of a node, are the same. Ac-
cording to tree metrics, the distance among trees com-
posed of a non-homogeneous number of nodes is large.
Since the input MXY tree is usually larger than the
MXY trees stored in the intermediate nodes of the
DDT , the classifier would more likely follow paths in
the decision tree leading to nodes where larger trees are
stored. This bias can strongly affect the performance of
the classifier.

A criterion has been designed in order to compare
the structural similarities between MXY trees even if
the trees do not feature a homogeneous number of nodes.
The nodes of the MXY trees store vectors of labels with
real values, and then the node matching is modified in
order to deal with continuous values: given two XY trees
T1, T2, and a threshold t, we say that a node i of T1 with
label l1 ∈ Rn and a node j of T2 with label l2 ∈ Rn

match if: |l1 − l2| < t. Let T (i) indicate the sub-tree of
the tree T descending from the node i of T . For each
node i of T1 and each node j of T2 we construct the tree
SMR(T1(i), T2(j)). The similarity between a tree T1 and
a tree T2 is defined as:

SIM =

∑|T1|
i=1

∑|T2|
j=1[|SMR(T1(i), T2(j))|·g(T1, T2, i, j)]

|T1|·|T2|
(1)

where |T1| is the number of nodes of tree T1, |T2| is the
number of nodes of tree T2, and the function g(T1, T2,
i, j) weights the level difference between the node i of T1
and the node j of T2. Function g is a monotonic decreas-
ing function: if the level drop between two nodes is large
then the function g assumes a small value.

This similarity function scans all the nodes of the
trees T1, T2 to find all maximum common sub-trees. The
number of nodes of all these sub-trees are summed and
the result is normalized by the product of the number
of nodes of the two trees. This similarity function takes
into account all the internal similarities between the trees
and, after the normalization step, is no longer highly sen-
sitive to the dimensionality of the input trees. Since the
trees are ordered, the maximum sub-tree extraction be-
tween two trees can be performed with complexity linear
to the number of nodes of the smaller tree.

3.3 Indexing strategy

The automatic indexing strategy employed in
STRETCH makes use of a template structure named
correlation graph [4], which allows the implementation
of information extraction strategies based on image
processing and reading techniques. The structure of
such a graph is very similar to Form Graphs introduced
in [5] for form registration and reading. The main
difference is that correlation graphs are learned from
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examples, instead of being explicitly built by users
as in [5]. The correlation graph describes a document
understanding strategy which first computes the search
area for fields to be read, possibly based on the posi-
tion of other already found fields. Afterwards, it uses
some predefined template elements to “read” the field
contents inside the search area according to the field
type (for instance string, graphical element, date, total
amount). Meaningful fields are of three main types: (i)
fields to be read as text (ASCII strings); (ii) textual
or geometric tags used by the recognition strategy to
understand the document structure; and (iii) image
fields that can be recognized by suitable methods (for
instance, logos). Each information field is assigned a
basic type that defines how its value is interpreted
during retrieval. The search areas for the information
fields of a given document class are automatically
learnt upon the presentation of appropriate document
examples, and can be further refined by the presentation
of new examples. The location of fields to be read on
the basis of tags has been previously explored for
instance in [5,13]; however, it is important to observe
that in the STRETCH approach mutual relationships
are automatically learnt.

Learning and application development

The framework for strategy definition is endowed with a
learning tool, which, starting from examples supplied by
users, automatically generates the Java code to solve the
application. The tool is a graphic environment for the de-
velopment of document reading applications, which has
three components:

– a graphical interface that allows users to locate the
relevant fields on a set of document examples;

– a learning algorithm that performs a clustering of
the examples and detects the spatial cross-correlation
between fields;

– a synthesising algorithm that generates the Java code
of the reading strategy.

The user has to prepare a training set for the learn-
ing algorithm, based on a set of positive examples of
documents of a given class. The position of an informa-
tion field is simply marked by the user on the image of
each example by drawing the surrounding rectangle with
the mouse. Then the user has to choose a type for the
field, among a set of predefined ones. Different exam-
ples can have a different number and different types of
fields. Other specific parameters can be set as well (e.g.,
a dictionary of textual tags).

The learning algorithm performs a clustering of the
document examples marked up with the relevant fields.
The clustering algorithm is based on the minimization of
the information required to describe the examples them-
selves [4]: this amounts to a sort of Simulated Anneal-
ing. The number of clusters is not predefined: it is learnt
from the examples along with the structure of the clus-
ters. Reducing the “temperature” parameter slowly and
adopting a rather small number of examples (a few tens

for the applications so far explored) causes stable con-
vergence of the clusters, apart from their order. This
algorithm can be replaced by other clustering methods,
notably by LVQ2 [14].

Each cluster of documents corresponds to a sub-
strategy capable of locating and reading interesting
pieces of information in the document image. The loca-
tion areas are computed in terms of the overlap of the lo-
cations in the single examples where a given information
field has been marked. For instance, if the field “total
amount” can be located either bottom down or midway
left, the documents will be partitioned into two clusters
and two sub-strategies will be generated. The complete
strategy for reading a specific document class typically is
a choice among sub-strategies. The full class-dependent
strategy executes the various sub-strategies sequentially,
until one sub-strategy is successful; if none is, the strat-
egy fails. The sub-strategy execution follows an auto-
matically assigned priority which reflects an overall opti-
mization, based in particular on the sample distribution
in the training set. The output of the class strategy is a
string containing all the extracted information, i.e., the
content of each information field, interpreted according
to its type, and its location in the document image.

The Java code implementing a recognition strategy
is synthesised using pre-defined building blocks which
perform the following functions:

– locate the fields to be read by computing the search
areas;

– extract the field content inside a search area on the
image, taking into account the field type.

Basic methods implement the elementary functions, such
as reading a textual field by invoking an OCR library,
classifying a logo, recognizing a tag against a dictionary,
and interpreting a date. Alternative methods can be
employed; for instance, for reading printed text we have
actually experimented with both in-house developed so-
lutions [7] and commercial OCR packages. A logo can be
located and recognized [16] as an auxiliary confirmation
of document classification. The program synthesis algo-
rithm also finds the optimal ordering of execution of field
processing in order to minimize backtracking in case of
failure of the current sub-strategy.

4 Applications and experimental results

We have thoroughly tested STRETCH in two appli-
cation scenarios, concerning invoices and bank docu-
ments, respectively. In both applications classes are user-
defined; in the former, they correspond to suppliers and
do not have one-to-one correspondence with document
layout; in the latter, classes correspond to document
types. In the following, we detail the goals of either ap-
plication, its implementation in STRETCH, and present
classification and indexing results on selected test sets of
real documents.



E. Appiani et al.: Automatic document classification and indexing in high-volume applications 77

Fig. 8. Two examples of invoices. Personal data are blackened for privacy reasons

4.1 Passive invoices workflow

In a Company or Institution, passive invoices are the
documents issued by suppliers or consultants which re-
quire payments relevant to given services or goods. In
this scenario, STRETCH aims at providing both a digital
archive and automated data entry for Value Added Tax
(VAT) recording, as required by tax regulations. Two ex-
amples of invoices processed by STRETCH are depicted
in Fig. 8.

The goals of the application are:

– Classify the documents according to user-defined
classes which correspond to the supplier who issued
the invoice.

– Locate and read the specific information fields, whose
contents are used used both as an index and for VAT
recording, that is: Supplier name; Date of issue; In-
voice number; Total amount of the invoice; IVA: the
total amount of Italian VAT tax.

The ICR reader embedded in the reading strategy reads
the information written on invoices issued by a given sup-
plier. If the supplier identification fails, a general reading
strategy for the invoice domain is applied. The results of
the indexing procedure are exemplified in Fig. 9, where
the contents of the information fields (Information Sum-
mary) are presented together with the corresponding ar-
eas in the document image.

Classification results. The selected data set consists of
753 binary images (300 × 300 dpi) of real passive in-
voices of a company of the Finmeccanica Group, issued
by nine different suppliers (nine classes). These images

(containing complete invoices) have a skew less than 7
degrees, and the noise is small. No specific filtering or
enhancement was applied to the images. Twenty docu-
ments per class were randomly selected to create a train-
ing set and the other 573 images constituted the test
set. A document is considered as “correctly classified”
when the most probable class assigned by the decision
tree is the correct one. In the performed tests 560 doc-
uments (97.8%) were correctly classified; for nine doc-
uments (1.5%) the second candidate is the correct one;
and for the remaining four documents (0.7% cases) the
third candidate is the correct one. The correct class never
ranks beyond the third position.

Indexing results. The documents used as a test set for
indexing (250 invoices) were a subset of the above de-
scribed data set. They show different layouts, various
styles, and many different fonts and font sizes. All the
invoices show a company logo, usually in one-to-one cor-
respondence with the supplier, the unique exception are
the invoices issued by one supplier that have neither a
fixed layout, nor a unique “standard” filling style.

The indexing performance was the following: the
complete reading strategy (field location, proprietary
neural OCR and tag dictionary) produced a total of
31 misclassification errors (96.9% correct on information
fields, 100% on tags). Errors were mainly encountered
with very noisy images, dot matrix, and italic fonts.

4.2 Bank account notes archive

This scenario concerns the management of a high-
volume document repository, produced day-by-day by
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Fig. 9. Summary of the information (“indexes”) extracted from a document (invoice) with the corresponding location in the
document image. Personal data are masked

the branches of a Bank. The documents can be of sev-
eral different types (see Fig. 10): account notes, cheques,
document batch headers, and different types of enclo-
sures. The most important are the account notes, which
describe a cash operation, often together with enclo-
sures. All the account notes and related enclosures must
be stored in their original paper form for legal reasons.
The physical storage and the effort spent in document
searches represent a significant cost for every bank2. The
document storage service, performed by an appointed
Service Bureau, consists in physically gathering all the
account notes and related documents, scanning both the
front and rear sides, indexing and archiving the images,
then performing physical paper storage whose location
is included in the document indexes in the archive.

The goals of the application are:

– Classify the documents according to their type,
in particular account notes (class “Contabile”),
cheques (class “Assegno”), and batch headers (class
“Testapacco”); all the other documents are generi-
cally regarded as Enclosures.

– For documents of either class “Contabile” or class
“Assegno” locate and read a specific information
field, corresponding to the operation number or the
cheque number, respectively.

The top-level strategy designed for this application is de-
scribed in [2], along with some preliminary experimental
results.

2 A medium size bank with some hundred branches pro-
duces from 30,000 up to 100,000 account notes and enclosures
a day.

Classification results. In the preliminary experiments
[2], the test set consisted of 541 heterogeneous docu-
ments issued by a large Italian bank group. These doc-
uments belong to any of the possible classes involved in
the application and show several different layouts, where
information fields are located with high variability. Black
and white images (200 × 200 dpi resolution) were pro-
duced by high volume scanners. No specific filtering or
enhancement was applied to the images.

The Decision Tree was generated using a total of 67
documents: six Testapacco, five Assegno, 24 Contabile,
and 32 mixed Enclosures (the latter class is actually
under-represented, as in the test set it contains more
than 20 different form types and also rear sides).

The document classification results, summarized in
Table 1, are quite encouraging: the Decision Tree-based
classification achieved 99% document classification ac-
curacy3 over the three main classes (Table 1a), or 91%
also taking all the enclosures into account (Table 1b).
By adding classification confirmation performed by ap-
propriate reading strategies looking for some pre-defined
tags (which, in particular, is necessary to discriminate
one type of Enclosures from Contabile), 100% on the
three main classes and 96% on all the documents was
achieved.

Further tests were conducted on larger document
sets, without re-training the original Decision Tree.
In particular, classification of all the documents in
live batches run at the Service Bureau servicing the

3 Accuracy is defined as the fraction of non-rejected docu-
ments which are correctly processed.
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a b

c

Fig. 10a–c. Examples of three types of bank documents: a
account note, b batch header, and c cheque. Personal data have
been removed in these examples

Bank was performed. In this case, the classification
“groundtruth” of each document was available, not the
reading groundtruth (i.e., the real content of each infor-
mation field). Therefore, classification accuracy can be
measured, but not reading accuracy. The results we ob-
tained in a typical batch are reported in Table 2. They
correspond to 98.2% of correct classification on the three
main classes (batch header, cheque, account note), with
0.7% rejection, i.e., the accuracy is 98.9%.

Indexing results. On the same test set employed for the
preliminary classification experiments, where the read-
ing groundtruth was available, we also performed index-

ing tests. Two different commercial OCR’s were tested
within the system for text reading. Table 3 presents
the reading results for the two document classes requir-
ing full indexing, obtained with the two different OCRs.
With OCR1, the information fields were correctly lo-
cated in 96% of cases. With both OCR1 and OCR2
the errors in reading the field values were partly due to
lack of context processing (numeric-only fields were not
forced, hence alphanumeric characters were confused,
such as ‘S‘ for ‘6‘, ‘B‘ for ‘8‘, and so on). Serious problems
were mainly encountered with very noisy or corrupted
images, which are very common in this domain because
of poor printing quality: in fact, the documents are al-
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Table 1. Preliminary results on 541 Bank documents for document classification (top-rank class only). a main classes
(“Testapacco”, “Assegno”, “Contabile”); b the three main classes plus Enclosures

Total Accuracy Correct Error Reject Confusion Matrix
Class # % # % # % Test. Ass. Cont. Rej
Testapacco 19 100 19 100 0 0 0 0 19 0 0 0
Assegno 36 100 36 100 0 0 0 0 0 36 0 0
Contabile 277 99 275 99 1 1 1 0.4 1 0 275 1
Total 332 99 330 99 1 1 1 0.3 20 36 275 1

a

Total Accuracy Correct Error Reject Confusion Matrix
Class # % # % # % Test. Ass. Cont. Encl. Rej
Testapacco 19 100 19 100 0 0 0 0 19 0 0 0 0
Assegno 36 97 35 97 1 3 0 0 0 35 0 1 0
Contabile 277 99 273 99 3 1 1 0 1 0 273 2 1
Enclosures 209 76 134 64 42 20 33 16 2 13 27 134 33
Total 541 91 461 85 46 9 34 6 22 48 300 137 34

b

Table 2. Document classification results on 1,390 Bank documents (three main classes) from a live batch of the Service Bureau

Output class Contabile Assegno Testapacco Rejected Total
Input class
Contabile 1191 15 0 8 1214
Assegno 0 118 0 0 120
Testapacco 0 0 56 0 56
Total 1191 133 56 10 1390

Table 3. Results on Bank documents: field location and reading

OCR 1 OCR 2
Assegno Contabile Total Assegno Contabile Total

Correct 19 111 130 30 72 102
1 error 10 43 53 1 58 59
2 errors 4 37 41 1 26 27
≥ 3 errors – 75 75 3 39 42
Inserted char. 1 1 2 – 7 7
Field not located 2 10 12 1 75 76
Total 36 277 313 36 277 313

ways second copies of the original (which is given to the
bank customers). To solve this problem some appropri-
ate image pre-processing appears to be mandatory.

4.3 Timing performance

Full processing time (classification and indexing) was
1.6 s per document on the average (documents A4 or
smaller) on a 500Mhz Pentium III with 512MB RAM,
running a single Document Processing Server. This is
comparable with the product currently adopted in the
Service Bureau, a high-end commercial ICR product,
which employs 1.4 s per document running on a similar

configuration. However, the latter is not endowed with
rejection capabilities, hence all the documents must be
verified manually, while with STRETCH only a small
percentage of documents are rejected. The time for man-
ual verification is therefore greatly reduced and the to-
tal average time required to process each document is
smaller than with the commercial product. Moving to in-
expensive parallel configurations, well affordable by Ser-
vice Bureaus, will make the system even more efficient.

To evaluate the advantages of a parallel execution
of more DPS on different processors we performed some
speedup benchmarks. Figure 11 represents the speedups
(speedup = sequential−time

parallel−time , considering the elapsed time
measured by the client for executing the whole batch) ob-
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Fig. 11. Benchmark of document processing speedup

tained with up to 4 DPS instances on four heterogeneous
processors. “Actual Speedup User” means with no im-
age archiving, while “Actual Speedup System” includes
it. The theoretical speedup is computed by taking into
account the different clocks of the Pentium processors
added one by one to the configuration (500, 500, 450,
and 200Mhz, respectively), with respect to the 600Mhz
power alone. The test was performed on a set of 270
documents of the bank application.

The best solution, currently under specification, will
probably be the integration of the STRETCH Docu-
ment Processing Server for document classification with
a set of high-end ICR’s specialized for reading differ-
ent document types. In fact, reliable document classifi-
cation would allow us to select among a set of different
OCR/ICR systems, each one well parameterized for a
specific document type, improving the whole service pro-
ductivity. More specifically, the same OCR can be tuned
according to different reading strategies suited for each
document type.

5 Conclusions

In this paper we have presented STRETCH, an archiving
system featuring a Document Processing Server based on
a novel approach for classification and indexing of hetero-
geneous documents. In the preliminary experiments on
invoices and bank documents, very encouraging results
have been obtained; in particular, document classifica-
tion accuracy is satisfactory.

Future work will aim at improving the overall sys-
tem performance and accuracy to enable its engineering
as a solution for high-volume document processing. In
particular, the integration in STRETCH of a more ac-
curate ICR system with proper image pre-processing and
contextual analysis will also yield an acceptable reading
accuracy. As regards pre-processing, we intend to work
in two directions: improve de-skewing capabilities, in or-
der to make the line extraction algorithm more robust
and more efficient, and introduce character smoothing
and completion algorithms, to overcome the poor image
quality of second copy documents. As regards contextual
post-processing, we will first of all introduce a“numeric
only” attribute for textual fields. We will also explore
the application of specific dictionaries for some fields and
cross-checking between fields when possible (for instance,
between“VAT” and “total amount”).

Another line of improvement concerns alternative
clustering methods for the Application Learning tool.
LVQ-based methods will be introduced to accommodate
larger training sets while still reaching learning conver-
gence.

An interesting prospective application of STRETCH
aims at avoiding document pre-sorting in the production
line of service bureaus in charge of document acquisition
and storage. In fact, employing STRETCH even just for
document classification is expected to be highly benefi-
cial. High-end commercial tools can show up to 97% doc-
ument classification accuracy, but with no rejection ca-
pabilities: all the documents in a batch must therefore be
verified by operators. Productivity can hence be greatly
enhanced by exploiting a system featuring both rejection
capabilities and high document classification accuracy.
In this case, manual verification can be applied to the
rejected documents only. A rejection of few percent will
result in conspicuous cost reduction and improved per-
formance. Another possibility is the use of STRETCH
document classification module as a front-end to high
performing OCR solutions.

Finally, a reliable document classification system will
allow the selection of either a specific tuning of the same
OCR or even different OCR’s, each tuned to a specific
document (sub-)class, to improve the whole service pro-
ductivity.
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