
Journal of the American Society for Information Science

Automatic Complexity Management;
Personalised Document Retrieval from the World Wide Web

Martin Kermit†, Martin Thorsen Ranang and Harald Nordgård-Hansen‡

School of Computer Sciences, Østfold College, Norway

The quest for useful information on the World Wide Web is in many cases tedious and time
consuming. Intelligent agents have become common in information searching and have proven
to help users to find what they need on the Web. This report presents a system which automat-
ically presents new, relevant Web pages to its users based on each user’s personalised usage
pattern. The article describes the theory behind the intelligent agent called Exquiro, how it
works and its implementation. The article concentrates on important parts of the theory behind
it rather than experiments. An overview of Exquiro and a presentation of the individual parts
of the system and how they interact with each other is presented and discussed. The article also
addresses some of the issues known to be improvable.

Introduction

In the later years, the technology to distribute electronic
information has reached the general public. The easy ac-
cess to the Internet has made the World Wide Web a primary
source of information. Unfortunately, the vast amount of in-
formation on the Web is by no means organised for optimal
retrieval. The Web can easily be compared to a great library
where books, tapes and magazines are thrown in heaps with
no system indexing the entries. Even though familiar search
engines like AltaVista, HotBot, Lycos, Fast1 and others are
improving to give better and more relevant search results,
collecting information online is still often a time consuming
task.

The inexperienced user of the Web who is searching for
information will in many cases find either too much infor-
mation or no information at all. Unfamiliarity with search
tactics for specific search engines or failure to rephrase badly
formulated queries are problems that often face professional
users of the Web as well. Combined with the fact that pop-
ular search engines cover different parts of the Web, the
power of these engines is diluted. Market studies indicate
that in order to survive into the information jungle, users
of the Web almost exclusively resort to search engines and
Web-portals or repositories2 to find the information they
seek (Marchiori, 1997). Overall, the ability to search is not
enough alone (Borgman, 1986; Fenichel, 1981).

To address this problem, intelligent search assistance is
needed, and a novel design of a system that is able to give
such assistance is proposed in this article. First is given an
overview of the different aspects of search assistance, fol-
lowed by a brief description of the mechanisms of the pro-
posed scheme. This is followed by the complete documen-

†Author to whom correspondence should be addressed, e-mail
address: martin.kermit@hiof.no

‡Current address: LinPro AS, Norway, http://linpro.no/

tation of the system, containing a description of the proxy
server, details of the textual representation, a description of
how similarity between documents are measured and an out-
line of the presentation of new, relevant Web pages to the
user. In the end is the conclusion of this article together with
future guidelines for the work.

Search Assistance and Web
Agents

Software tools referred to as intelligent Web agents seems
to be a remedy to problems regarding information retrieval
from the Web. The quest for adequate information on the
Web via individual search agents relies on what knowledge is
available about the user from previous Internet activity. This
knowledge should be used to construct individual user pat-
terns. Based on such user patterns, the intelligent Web agent
should be able to discover and ferret out the most relevant
information from the Web to its users.

Earlier Work

The growing interest for aided Web navigation has led to
the development of a variety of intelligent Web tools, like the
Web agent described by Haverkamp and Gauch (1998) which
also gives an extensive overview to intelligent agents in gen-
eral. An early example of a practical system is the agent
called ’WebWatcher’ designed by Armstrong et al. (1995).
The WebWatcher provides interactive advice to the Web-
browser Mosaic. Another architecture was implemented in
the system called ’Letizia’ by Lieberman (1995). This agent
performed limited searches on the Web while the user was
browsing, trying to recommend the user where to go next.
The Dublin Core Metadata Initiative3 is another attempt to

1 http://www.altavista.com, http://hotbot.lycos.com,
http://www.lycos.com,www.alltheweb.com

2 A repository is a topic-based collection of links maintained by
a human.

3 http://purl.org/dc/

1



2 MARTIN KERMIT, MARTIN THORSEN RANANG, HARALD NORDGÅRD-HANSEN

index Web documents both manually and automatic.
Other studies indicate that the hyperlink structure can be

valuable for locating information on the Web. If there is a
hyperlink from pageA to pageB, it can be assumed that
the author ofA recommends pageB (Brin & Page, 1998).
Intelligent agents exploiting the relation between the hyper-
link structure of Web documents are described in (Marchiori,
1997; Dean & Henzinger, 1999) among others. The search
engine known as Google4 is based on this principle.

The focus in the present research will rely on the con-
cept of textual similarity, like the WHIRL system proposed
by Cohen (1998b,1998a), rather than the hyperlink structure.
Text representation has been widely studied (Monson, 1997;
Croft & Lewis, 1987; Lewis, 1992) and is well suited for
the purposes of the Web agent presented here, which in the
following is named Exquiro.

Requirements of Web Agents

Cheung et al. (1998) have given a description of the most
important qualities of an intelligent Web agent with the ca-
pability of learning the behaviour of information users. Ac-
cording to this scheme, the goal of the agent is to discover
the most relevant information to its users under the following
requirements5:

1. The system must be compatible with most Web
browsers. There should be no extra requirements for the
browsers than the standard HTTP protocol.

2. The system should maintain a database with a full-
text index on retrieved documents. The user access patterns
should be extracted from these saved documents.

3. The system should learn both the access pattern of the
user and when the information source is updated with new
information. The latest version should be available before
the user requests it.

4. The topics that the users are interested in should be dis-
covered automatically. The system should also be able to
adapt each users change of interest over time. This particu-
lar knowledge is used when the system tries to discover new
relevant information for the user.

5. The system should avoid use of excessive network
traffic and thus make efficient use of network resources.
Searches for multiple users should be combined to reduce
the total number of searches.

System Overview

Exquiro is based on the scheme outlined by Cheung et
al. above and is unique in taking all five requirements into
account. To meet these requirements, Exquiro needs three
major components.

The first component is a robust and transparent mecha-
nism for logging each individual user’s Web browsing pat-
terns and for getting access to the full text of the Web doc-
uments accessed. In order to achieve this, Exquiro depends
on its users to be using a controlled proxy server. The proxy
server keeps a cache of files and acts like a buffer to the Web.
In this way, all communication is kept via the standard HTTP
protocol, and requirement (1) is met. The cache is configured

to log all the universal resource locators (URL) (Berners-Lee,
Masinter, & McCahill, 1994) that are accessed by each user
of the proxy server, fulfilling requirement (2). Requirement
(3) is also automatically fulfilled since the proxy server al-
ways holds the latest downloaded version of a document ac-
cessed by any user of the system. The parts of Exquiro which
are connected to the proxy server is outlined by a dashed box
in Figure 1.

The second component is the extraction and classification
of the users’ access patterns. Each document accessed by
a user is converted into a vector. The document vectors are
used to find the similarity value between two documents. The
assumption is that if two documents have a high similarity
value and a user has already seen one of them, then the other
document will probably be of interest to the user too. The
set of similarity values for a given user is then used to ex-
tract a set of topics or groups of similar documents, which
can be used to search for further documents of interest. This
meets requirement (4). Since all the comparisons are made
between documents that are already localised to the cache of
the system, requirement (5) is also taken care of.

The third and final component is the selection and presen-
tation of the search results to the user. For each user, a set of
URLs that are both unread and likely to be of interest to the
user is generated by comparing all documents in the cache to
the interest groups of the user. These sets are stored in the
database. When a user visits his personal page on Exquiro,
the proposed URLs are retrieved from the database, format-
ted as HTML and presented to the user.

The Squid Proxy Server

Squid is an open source Unix-based server software pack-
age that among other services, also provides high perfor-
mance caching for HTTP clients.

In brief, the Web browser does not directly communicate
with the Web server holding a requested document. Instead,
the browser requires the proxy server to fetch the document
for it. When a new page is demanded, the data is downloaded
by the proxy server and forwarded to the client. At the same
time, the data is stored (for a longer or shorter period) in
the server’s disk-based cache. When the same Web page
again is revisited by a client using the same proxy server,
the proxy server can choose to supply the document from its
cache, rather than refetching it over the net. A discussion of
the strategies involved in figuring out when a document can
safely be served from the cache is beyond the scope of this
research, and thus omitted.

When using Squid as a proxy cache server (often called
a Web accelerator), it is possible to configure the system
(browser and server) in such a way as to let the server create
a log of all the documents that it is fetching on behalf of each
client. This can be done by various methods, ranging from
assuming that a single IP source address for a request belongs

4 http://www.google.com/
5 In the original work, the requirements of Cheung et al. appears

in a different order. The reordering is due to the presentation of
Exquiro later.



EXQUIRO: A PERSONAL WEB AGENT 3

Figure 1. Simplified overview of Exquiro. Web pages on the Internet are retrieved by the user via the proxy server. The
proxy server keeps log files monitoring the Internet traffic as well as storing copies of Web documents in a database. Another
database generates a vocabulary of words retrieved from the documents. From this database, combined with the user access
log files, Web documents are compared to each other and links to new documents in the Web cache are presented to new users
likely to be interested. The dashed box indicates the parts of the proxy server.

to a single user in a given time frame, to using authenticated
access to the proxy-server for all users.

In addition to the access log, the server creates a log file of
documents as they are stored in the cache and when they later
are deleted. Using these two logs, it is possible to maintain a
database of all the different Web pages visited by the differ-
ent users, and the corresponding file in the cache containing
this document.

Document Representation

For a user access pattern to be generated, the informative
content of the documents that the user recently has accessed
from the Web has to be used. These recently6 visited Web
documents are directly available from the proxy server. Thus,
this pattern has to be created on the basis of Web documents,
or more specific, directly from HTML-files. Since HTML-
documents consist of strings of characters a mapping into a
suitable mathematical representation for further processing
is needed.

The first step in the process of creating a suitable repre-
sentation for HTML-files, is a simple preprocessing of the
documents to remove HTML-specific tags and images from
the Web pages. As a result, only the informative textual con-
tent and a list of weighted keywords from title tags are stored
from each document.

The next step is to remove words that are extremely com-
mon in general and may be considered as noise to the input
data.

When this is done, the next step is to find the smallest
common denominator of each word, in a process called word
stemming. After these operations are applied to the docu-
ment, it is well suited for mathematical calculations. It con-

tains less noise, less unique words but it still represents the
information. This process can be viewed as an amplification
of the informative content combined with a noise reduction
and will be described in separate subsections in the follow-
ing.

Removing Stop Words

The removal of stop words is a technique commonly used
when working with document indexing and retrieval. This is
done to improve the accuracy of the results and to reduce the
number of redundant calculations (Salton, 1989).

In most texts there are some words that appear too fre-
quently to be of any use for representing a document.
Exquiro contains a list of such words, maintained manually
by inspecting those terms with the highest frequency in all
the documents in the system’s cache.

The Vector Space Model

For each single user, there existN documents in the Web
cache stored by the proxy server. TheseN documents rep-
resent a set, denotedD, containing all recently visited docu-
ments for a single user. Further analysis will refer to the set
of documents for a single user only.

Exquiro’s text classification algorithms are based on a vec-
tor space model (VSM) for text representation (Joachims,
1999). The vector space model requires an existing vocab-
ulary, T, that consists of all known words. New words are

6 The setup of the proxy server determines the time scale that is
referred to as recently. This is usually set to be the last week or
month.



4 MARTIN KERMIT, MARTIN THORSEN RANANG, HARALD NORDGÅRD-HANSEN

added as they appear in the Web cache. By this model a doc-
ument is considered a vector denoted~d with elementsdt of
integers that corresponds to termst 2 T. With this notation,
~d 2 RjT j, where each dimension is a count of occurrences of
a specific word, andjTj the cardinality ofT.

Word Stemming

The number of elements in the document vector will al-
ways be the same as the number of known words by the
system up to date. Since the number of known words is
very large, the calculations on such vectors are computation-
ally expensive. To reduce the word space dimensionality, all
words are stemmed7 according to the Porter stemming algo-
rithm (Porter, 1980). Applying the stemming algorithm on
a word results in an atomic word stem where the suffix has
been removed. Such word stems are referred to asterms. By
using the stemming algorithm, the space dimensionality of
known words is reduced, since many words are mapped to a
single term. An example are the wordscomputing, computer
andcomputeswhich all are mapped to the termcomput.

It can be argued against the Porter stemming algorithm
that it sometimes is being to aggressive in conflation, like
"policy"/"police" and "executive"/"execute" are conflated.
Sometimes the algorithm is missing others, i.e. "Euro-
pean"/"Europe" and "matrix"/"matrices" are not conflated
(Xu & Croft, 1998).

Some improvements to the Porter stemming algorithm has
been performed, but the principles remain the same as these
have proven to give good results for data mining in electronic
text collections (Walker & Truman, 1997).

Term Frequency / Inverse Document Frequency

After the removal of stop words and the word stemming
has been performed, the resulting word stems, or terms,t,
are used to represent the document vectors. The document
representation used is the so called term frequency / inverse
document frequency (TF-IDF) weighting scheme proposed
by Salton (Salton, 1989). The TF-IDF defines a "bag-of-
words"-representation of documents (Joachims, 1997) de-
scribed by equation (1) for each vector termdt ,

dt = log(TF~d;t +1) � log(IDFt): (1)

Here, TF~d;t is the number of times that the termt occurs in

document~d and IDFt is the inverse document frequency for
a termt. The inverse document frequency fort, is given by

IDFt =
N
nt

(2)

whereN is the total number of documents andnt is the total
number of documents that contain the term. A single docu-
ment is thus represented as

~d = [d1; :::;dt ; :::;djTj]
t ; t 2 [1; jTj] (3)

The total number of documents are stored in a matrixD such
that

D = [~d1; :::; ~dn; :::; ~dN]; n2 [1;N]: (4)

The matrixD is thus the formal representation of the setD
of N documents that a user has visited recently and stored as
Web cache in the proxy server.

Similarity and Correlation
between Documents

The documents are now represented as vector quanti-
ties, and the angle between two document vectors can
then be used to identify how much they have in com-
mon. The inner product contains the cosine to this an-
gle, and is defined between~dn = [dn1; :::;dnt; :::;dnjTj] and
~dm = [dm1; :::;dmt; :::;dmjT j] as

h~dn; ~dmi= ∑
t2T

dntdmt: (5)

The scalar quantity,h~dn; ~dmi, is then a measure of how much
two documents,~dn and ~dm, are related. The similarity value
between the two documents is the normalised inner product
given by (Cohen & Hirsh, 1998),

Sim[~dn; ~dm] =
h~dn; ~dmi

k~dnk � k~dmk
: (6)

The quantity Sim[~dn; ~dm] thus gives a measure of how two
documents are related to each other. Since Sim[~dn; ~dm] 2

[0;1], the value 0 occurs if the documents~dn and ~dm have
no words in common, and 1 if the two documents are identi-
cal. Because the similarity value always falls in between two
extremes, an activation function,f (x), is applied to decide
whether there exists a correlation or not. In this case, a hard
limiting threshold function, given by

f (x) =

�
0 iff x< θ
1 iff x� θ (7)

is used. The threshold function is used to measure the fi-
nal correlation between two documents, and could in gen-
eral be any increasing function ofx, depending on the de-
sired weighting scheme. In this work, only the hard limiting
threshold function is used.

The correlation provided by the threshold function is
given by the correlation operatorĈ,

Ĉ(~dn; ~dm) = f (Sim[~dn; ~dm]): (8)

In this case, using the hard limiting threshold function for
f (x), Ĉ becomes a binary operator indicating whether two
documents are related or not.

7 stemming is also known as truncation



EXQUIRO: A PERSONAL WEB AGENT 5

~d1 ~d2 ~d3 ~d4 ~d5 ~d6 ~d7 w
~d1 - 0 1 1 0 0 0 2
~d2 0 - 0 1 0 1 0 2
~d3 1 0 - 0 0 0 0 1
~d4 1 1 0 - 0 0 1 3
~d5 0 0 0 0 - 1 0 1
~d6 0 1 0 0 1 - 0 2
~d7 0 0 0 1 0 0 - 1

Table 1
Correlation matrix for the 7 documents in the example. The
rightmost column indicates the total weight for each docu-
ment.

Categories of Documents

Correlation between documents is the main feature to cre-
ate clusters or groups of documents related to each other. For
all documents~dn the correlation between itself and all other
documents is measured and added up, giving a corresponding
weight,wn given by

wn = ∑
n6=m

Ĉ(~dn; ~dm): (9)

Thus, for a set ofN documents, a weight vector~w is
formed where each vector elementwn represents how
many other documents in the set are related to~dn, ~w =

[w1; :::;wn; :::;wN]
t .

From~w the largest element,wL is extracted. This element
is the weight that corresponds to the document~dL with the
largest sum of related documents in the setD, represented as
the matrixD,

~dL = f~dnjmax
n

wng; n= 1;2; :::;N: (10)

This document forms the first group or category of docu-
ments,G1, given by

G1 = f~dmjĈ(~dL; ~dm) = 1g: (11)

The document~dL is for the further referred to as the
group leading document for groupG1. For P new groups
G2;G3; :::;GP to be generated, existing weights within the
defined groupG1 has to be removed and recalculated. The
new weights are iteratively updated by

wm = ∑
n6=m

fĈ(~dn; ~dm)jf~dn; ~dmg =2 Gpg; (12)

given thatGp; p = 1;2; :::;P represents thep groups regis-
tered at the current iteration. This scheme is either repeated
up to a predefined number of groups,P, that are desired from
the set ofN documents or until all weights are removed. In
the latter case, all documents will be categorised into at least

~d1 ~d2 ~d3 ~d4 ~d5 ~d6 ~d7 w
~d1 - 0 - - 0 0 0 0
~d2 0 - 0 - 0 1 0 1
~d3 - 0 - - 0 0 0 0
~d4 - - - - - - - 0
~d5 0 0 0 - - 1 0 1
~d6 0 1 0 - 1 - 0 2
~d7 0 0 0 - 0 0 - 0

Table 2
Updated correlation matrix for the 7 documents in the exam-
ple after all correlation to Group G1 is removed.

one group, thus

D = G1[G2[; :::;[GP =

P[

p=1

Gp: (13)

A Categorisation Example

To illustrate the classification procedure, a small example
given that 7 documents exist in the Web cache is given. The
topics of the 7 documents are as follows:

~d1 - How to play the guitar for beginners.
~d2 - A new computer program for midi sequencing.
~d3 - News group for guitar players.
~d4 - Various music instruments.
~d5 - Latest news in processor technology.
~d6 - An online store selling cheap computers.
~d7 - The home page of a symphony orchestra.

Assume that the correlations have been measured between
the 7 documents according to the outlined description giving
the correlation matrix shown in Table 1. The correlation ma-
trix is symmetric, indicating with 1 or 0 whether there exists
a correlation or not. The diagonal elements cancel out, since
self-correlation of documents is not counted. The rightmost
column adds up the number of documents that each docu-
ment,~dn is correlated to, giving the corresponding weight,
wn for that document.

In this example, document~d4 has the largest weight, and
thus becomes the group leading document for its group. This
group, labeledG1 consists of all documents which has con-
tributed to the weights of the group leading document. In this
case,G1 = f~d1; ~d2; ~d4; ~d7g.

To define the next group,G2, all correlation between the
members ofG1 is removed. The new, updated correlation
matrix is shown in Table 2 with new weights not including
correlation withinG1. It should be marked that not only
correlation with the group leading document is removed, but
also in between the other elements of the group.

From the new correlation matrix, the largest weight is
again chosen as the group leading document for the next



6 MARTIN KERMIT, MARTIN THORSEN RANANG, HARALD NORDGÅRD-HANSEN

group,G2. In this case, the group leading document forG2 is
~d6. The new group is then defined asG2 = f~d2; ~d5; ~d6g. Since
no other correlations exist after removal of the correlation be-
tween the elements ofG2, all documents are categorised into
two groups,

D = f~d1; ~d3; ~d4; ~d7g[f~d2; ~d5; ~d6g= G1[G2; (14)

which completes the example.

Suggesting Web pages
for the User

After finding the group leading documents of the groups
created using the procedure described above, these can be
used to provide the basis for new personalised information
retrieval by the system. Each group leading document now
represent a distinct topic that is of interest to the user.

The search for new information for the user takes place in
the proxy server’s Web cache. The group leader documents
of each user are compared with all documents that arenot a
part of the user’s profile, using the correlation scheme previ-
ously outlined. This allows Exquiro to present a page with
links to those documents that are both new to the user and
have the highest similarity to the most interesting topics the
user has been looking at.

The problem of gaining enough data to suggest good re-
sources while the number of users of the system are fairly
low, is handled by building a separate agent into the frame-
work. This agent is simulating a set of anonymous users with
mostly the same interests as the real users, by extracting key-
words from all of the group leader documents for all users,
submitting these to various search engines, and retrieving a
set of the documents found by the search. These are then of
course filtered by the Exquiro system prior to presentation to
the users to improve relevancy.

Conclusions and Areas of Further
Study

In this report, a novel design of a personalised intelligent
Web agent has been presented. Important qualities that a Web
agent are expected to contain, are maintained. By having
system users connected to the Web via a proxy server mecha-
nism, user profiles are created, and leading documents repre-
senting the user’s interest are extracted. Based on these lead-
ing documents, new and relevant Web pages are presented
for the user.

One of the major problems with the current system is the
computational load imposed by the quadratic nature of the al-
gorithm. A related problem is the network imbalance caused
by all users having to use the same proxy server. These prob-
lems would both point to a solution utilising a large network
of servers, where users would be using “close” servers. A
solution would then have to be found for sharing documents
between servers in order to have the largest possible set of
alternatives to suggest to the user.

Solutions are currently being developed for authenticating
users by using a nickname/password pair on the proxy server.

The speed problem is also being addressed by profiling the
code and working to implement as efficient code as possible
in the critical areas.

The system described here is named Exquiro, and is oper-
ative for usage at http://www.exquiro.net/.

Acknowledgements

We would like to thank the School of Computer Sciences,
Østfold College for allowing us to pursue this idea over the
last years and supporting us while we were always asking for
larger disks and more computing power. We would also like
to thank the various students that have been involved in trying
out our ideas in more than usually challenging projects.

References
Armstrong, R., Freitag, D., Joachims, T., & Mitchell, T. (1995).

A learning apprentice for the world wide web. InAaai spring
symposium on information gathering from heterogeneous, dis-
tributed environments.

Berners-Lee, T., Masinter, L., & McCahill, M. (1994).Uniform Re-
source Locators (URL)(RFC No. 1738). IETF Network Work-
ing Group.

Borgman, C. L. (1986). Why are online catalogs hard to use?Jour-
nal of American Society for Information Science, 37(6), 387–
400.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertex-
tual web search engine. InProceedings of the 7th international
world-wide web conference(pp. 107–117). Brisbane, Qld.

Cheung, D. W., Kao, B., & Lee, J. (1998). Discovering user access
patterns on the world wide web.Knowledge-Based Systems, 10,
463–470.

Cohen, W. W. (1998a). The whirl approach to integration: An
overview. InAaai-98 workshop on ai and information integra-
tion.

Cohen, W. W. (1998b). A web-based information system that rea-
sons with structured collections of text. InSecond international
conference on autonomous agents (agents’98).Minneapolis/St.
Paul.

Cohen, W. W., & Hirsh, H. (1998). Joins that generalize: Text
classification using whirl. InKdd.

Croft, W. B., & Lewis, D. D. (1987). An approach to natural lan-
guage processing for document retrieval. In10th annual inter-
national acm sigir conference on research and development in
information retrieval (sigir-87)(pp. 26–32). New Orleans, LA.

Dean, J., & Henzinger, M. R. (1999). Finding related pages in the
world wide web.Computer Networks, 31, 1467–1479.

Fenichel, C. H. (1981). Online searching: Measures that discrimi-
nate among users with different types of experience.Journal of
American Society for Information Science, 32, 23–32.

Haverkamp, D. S., & Gauch, S. (1998). Intelligent informa-
tion agents: Review and challenges for distributed information
sources.Journal of American Society for Information Science,
49(4), 304–311.

Joachims, T. (1997). A probabilistic analysis of the rocchio algo-
rithm with tfidf for text categorization. InInternational confer-
ence on machine learning (icml).Nashville, Tennessee, USA.

Joachims, T. (1999). Transductive inference for text classification
using support vector machines. InInternational conference on
machine learning (icml).Bled, Slovenia.



EXQUIRO: A PERSONAL WEB AGENT 7

Lewis, D. D. (1992). Text representation for intelligent text re-
trieval: A classification-oriented view. In P. S. Jacobs (Ed.),
Text-based intelligent systems.Lawrence Erlbaum.

Lieberman, H. (1995). Letizia: An agent that assists web browsing.
In International joint conference on artificial intelligence.

Marchiori, M. (1997). The quest for correct information on the web:
hyper search engines.Computer Networks and ISDN Systems,
29, 1225–1235.

Monson, L. (1997). Classifying text with id3 and c4.5.Dr.Dobb’s
Journal, 117–119.

Porter, M. F. (1980). An Algorithm for Suffix Stripping.Program,
14(3), 130–137.

Salton, G. (Ed.). (1989).Automatic text processing: the trans-
formation, analysis, and retrieval of information by computer.
Addison Wesley.

Walker, N., & Truman, G. (1997). Neural networks for data mining
electronic text collections.SPIE Proceedings Series, 3077, 299–
306.

Xu, J., & Croft, B. (1998). Corpus-based stemming using co-
occurrence of word variants.ACM Transactions on Information
Systems, 16(1), 61–81.


