
Automatic Categorization of Questions for a

Mathematics Education Service

Ken Williams, Rafael A. Calvo, David Bell

Web Engineering Group
The University of Sydney

Bldg J03, Sydney NSW 2006

{kenw,rafa}@ee.usyd.edu.au and dave@student.usyd.edu.au

January 7, 2003

Abstract

This paper describes a new approach to managing a stream of questions about
mathematics by integrating a text categorization framework into a relational
database management system. The corpus studied is based on unstructured sub-
missions to an ask-an-expert service in learning mathematics. The classification
system has been tested using a Näıve Bayes learner built into the framework.
The performance results of the classifier are also discussed. The framework
was integrated into a PostgreSQL database through the use of procedural trigger
functions.
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1 Introduction

Ask-an-expert services are becoming more common, spanning from standard
customer relationship management to discussion forums in a particular disci-
pline. In general, these online services are supported by domain experts who
attempt to answer questions posted via email or web forms. Since these experts
often have a single subdomain of expertise it is very helpful if they have only to
read questions that relate to this subdomain. This can be done by organizing
the service in such a way that users are encouraged to post their question in the
appropriate area. However, this approach is not always successful as often the
user will either ignore the organization scheme or not know to which area their
question belongs.



These problems are common within a number of domains. Our test was
performed on messages sent to a mathematics ask-an-expert service for students
and teachers.[6] The issues discussed also apply to other similar systems such as
customer relationship management (CRM) and e-learning systems in general.
These systems can use an automatic text categorization framework to categorize
the questions into the experts’ areas of interest, or into the appropriate customer
support mailbox.

The downside of an automatic categorization approach is that integrating
such functionality into existing systems can be very complex, and often involves
an in depth understanding of text categorization techniques. Also, the content
is normally stored in systems with a relational database in the backend, as is
the case for most content and learning management systems. By building the
categorizer into the database, the categorization framework[11] can be made
invisible to the users and is thus more attractive to the average system admin-
istrator or application developer. Also, application developers, do not have to
re-implement the classification software. They only need a machine learning
professional to assist in training the classifier, and once trained it can then be
reused for different applications.

The applications of information retrieval have been well studied since the
1980s, as discussed by Salton [9, 8], and many of these methodologies have been
integrated into commercial database management systems that have free text
search capabilities. However, this integration does not seem to have penetrated
the text categorization domain.

Section 2 of the paper discusses the data set that was used to test the system.
Section 3 discusses the text categorization framework and the extensions made
to it, including the implementation within the database management system.
Section 4 discusses the quantitative results of the testing process and Section 5
concludes.

2 Dr. Math Corpus

For the evaluation of our system we have tested the performance of the cate-
gorization system over a set of unstructured, informal documents from the Ask
Dr. Math service.[6] These documents are mostly written by students between
the ages of 6 and 18, though question submissions can come from any member
of the general public. The documents vary in length from a single sentence to
several paragraphs. In addition to this, many examples contain symbols and
diagrams, making linguistic analysis very difficult. The Ask Dr. Math service
has about 300 volunteers (about 30-40 of which may be active in any given
month), dealing with hundreds of questions a day. The volunteers have exper-
tise in different areas of math, and the site has won a number of awards for its
useful service. Figure 1 shows an example submission to the service.

The filtering of questions is a major element of the Ask Dr. Math question
answering process. The service may receive about 7000 questions a month,
about half of which are eventually answered. The unanswered questions may
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Implicit Differentiation

Find the slope of the tangent at the point
(3,4) on the circle x^2 + y^2 = 25.

My answer: I guess we would need to put it
in the y = mx + b form.

Thanks for any help,
Scott

Figure 1: An example document from the Dr. Math corpus

be duplicate submissions, messages of thanks, inappropriate questions, or other
messages that don’t require a response. There also may be some legitimate
mathematics questions that go unanswered, simply because the service is not fee-
based for either the students or the experts, and thus can make no guarantee that
any particular question will be answered. The experts are currently responsible
for choosing their own questions to answer.

The Dr. Math corpus we used contains 6632 documents and was split into
a training set of 5305 documents and a testing set of 1327 documents. There
are 95 categories in the corpus, and the average number of documents in each
category is 107.15. The categories are structured in a 2-level hierarchy (“level”
and “topic”), with a total of four levels (elementary school, middle school, high
school, and college) and 62 topics (for example, “geometry” or “statistics”).
The most popular category, high school-level geometry, contains 877 documents,
and the least popular category, elementary-level golden ratio, contains only 3
documents. Each document may be a member of more than one category, and
the average number of categories per document is 1.53. Figure 2 shows the
distribution of categories throughout the corpus.

It may be important to note that our corpus was drawn from the public
archive of answered questions, not directly from the stream of incoming ques-
tions. Because the archiving process is fairly intensive and not all questions are
chosen for archiving, our corpus may therefore differ significantly from the in-
coming question stream. For example, none of the kinds of unanswered questions
mentioned earlier are represented in the archive. Because of this difference, it is
difficult to extrapolate our experiments to performance on the incoming ques-
tion stream. However, because the incoming question stream is uncategorized,
obtaining a large enough number of categorized questions for our investigation
necessitated drawing them from the archived questions.
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Figure 2: Category distribution for the 95 Dr. Math categories
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INSERT INTO documents
(name, content, categories)
VALUES
(’my name’,
’my content’,
categorize(’my name’,

’my content’,
’documents’));

Figure 3: Example document insertion statement with categorization

3 Categorization Framework

Object Oriented Application Frameworks (OOAF) are software engineering ar-
tifacts that improve reusability of design and implementation [4, 5].

The framework used in this project was designed to provide a consistent
way to build document categorization systems.[11] It allows the developer to
focus on the quality of the more critical and complex modules by allowing reuse
of common, simple base modules. The framework has implementations of k-
Nearest-Neighbor (kNN), Näıve Bayes (NB), Support Vector Machine (SVM),
and Decision Tree (DT) classifiers [12, 10]. Other methods such as Neural
Network [3, 2] classifiers are under development.

The framework architecture allows extensions to be built by subclassing its
main classes [11]. Class inheritance contributes to code reuse and quality. In
this project we extended the framework by adding an alternative Collection
class to allow for the data to be read directly from a database instead of from
a file system. Having a classifier that uses the data directly from the database
streamlines the management of questions and answers in this type of system.
In fact, it allows many content or learning management systems to natively use
automatic classification features. The framework also provides statistical anal-
ysis of experimental results, and produced the performance measures discussed
in Section 4.

The framework’s architecture and language choice enabled us to easily build
the framework into postgreSQL through postgreSQL’s PL/Perl and PL/perlU
support. This support allows the creation of procedural language functions
through the use of the ”CREATE FUNCTION” SQL command. Using this
support and the PL/perlU language we were able to build a ”launching” function
that invoked the categorization framework on the document to be classified.
This means that the only command necessary to categorize a document is a
basic insert statement with a function call in place of a value for the category of
the document, as shown in Figure 3. This statement can be further simplified
through the creation of a pl/psql trigger function which fires automatically on
insertion and passes the necessary values to the categorize() function.

If the categorization is to take place within a database, where categorized
documents are often going to be appended to the learning set, a learning algo-
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MaP MaR MaF1 MiF1 Error
NB 0.246 0.226 0.226 0.361 0.022

kNN 0.211 0.186 0.179 0.257 0.025
Baseline 0.019 0.018 0.018 0.042 0.031

Table 1: Macro- and Micro-averaged performance scores.

rithm which has very little training overhead is ideal. This avoids the need to
retrain a categorizer after each document insertion. Two such algorithms are
the Näıve Bayes algorithm (NB) and the K-Nearest Neighbor algorithm (kNN).

The training phase in NB consists only of counting term frequencies in each
document and using them to calculate conditional probabilities between terms
and categories. These probabilities are then consulted when categorizing a new
document, with conditional probabilities for each term being multiplied to find
the probability that a given document belongs to a certain category.

kNN in its basic form has essentially no training phase. Each document is
represented as an n-dimensional vector, where n is the number of unique terms
in the training set. When a new document is to be classified, it is compared to
the vectors of the documents in the training set. The k training vectors which
are closest to the test vector are found (with distance defined as the cosine of the
angle between any two vectors), and the most prevalent category or categories
amongst these is assigned to the new document.

In our testing, we have found that NB is a more accurate categorizer than
kNN. The rest of this paper will focus on the NB experiment and results.

Since the categorization performance is determined only by the classification
framework, all these methods should behave the same inside the database as
they do outside the database. What the integration into the database does is
to make the functionalities of the framework available as procedures in the SQL
language. Since relational databases can be designed using an object oriented
methodology [1, 7], by integrating it in this way, the classification task (and
framework) can also be designed into larger OO systems.

4 Method and Results

The 5305 training documents in the Dr. Math corpus were loaded into a
database table named “documents.” This table consisted of 3 columns: name,
content and categories. The testing set was then inserted into the database, one
document at a time using a statement similar to that in Figure 3. A SELECT
statement was then used to compare the assigned and actual categories of each
document. Through this comparison the performance of the categorization in
terms of recall and performance was measured. The precision and recall1 were
then used to calculate the F1 measure [2, 10].

1Recall is the proportion of the target items that the system selected, i.e. tp/(tp+fn).
Precision is the proportion of selected items the system got right, i.e. tp/(tp+fp).
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The results in Table 1 show the performance of the categorization algorithms.
The precision, recall, and F1 scores can be computed using macro-averaging,
which gives equal weight to each category, or micro-averaging, which gives equal
weight to each document. [12, 10] For the kNN algorithm, we used a k value of
15 and a categorization threshold of 0.12, which seemed to perform the best in
our investigations. We also include in Table 1 the results of a baseline classifier,
which assigns categories at random to each test document, weighting the random
generator by the frequency of categories in the training set.

Next, we turned our attention to ways of improving performance on the
test set. As mentioned in Section 2, each category name is a combination of
two components, a level and a topic. This suggests that separate categorizers
could be trained to recognize the two components separately, perhaps with more
success than a single categorizer may have on the two components together.

To test this hypothesis, we created three new categorization tasks: one that
categorizes by level alone, one that categorizes by topic alone, and one that uses
the separate topic and level categorizers to assign a combined category. In this
combined process, each assigned level was combined with each assigned topic,
any nonexistent categories (such as “calculus.elem” or “addition.college”) were
filtered out, and all remaining categories were assigned to the given document.
This process was performed using the Näıve Bayes and baseline categorizers
described above. Table 2 shows the performance for the Näıve Bayes categorizer
and Table 3 shows the baseline categorizer for comparison.

Comparing the combined task to the NB results in Table 1, we see that sep-
arating the categorization task into two subtasks adversely affected the overall
performance on the combined task. The performance for the level task seems
good, but comparing it with the baseline categorizer shows that it may not be
significantly better than random guessing. This is probably due to the small
number of categories. However, the performance on the topic task is notewor-
thy, because it is so far above both the baseline categorizer and the original
NB categorizer. In addition, the topic assignment may be more valuable in this
application than the level assignment, because while most students will be able
to indicate their own age or grade level when asking a question, they may not
be able to place their own question in an appropriate category.

Because the math topics used in this experiment were generated from the cat-
egory names, we ended up with some duplication that may have decreased per-
formance. For example, there are categories called “probability.high,” “statis-
tics.high,” and “prob.stats.middle.” This means that the combined list of ex-
tracted math topics includes “probability,” “statistics,” and “prob.stats.” The
exact effect of this on the categorizers is unknown, but we might expect these
overlapping categories to confuse the categorizer. A service such as this one
may therefore benefit from using more consistent category names.
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Task MaP MaR MaF1 MiF1 Error
Level 0.524 0.626 0.570 0.671 0.223
Topic 0.339 0.314 0.313 0.440 0.026
Both 0.187 0.181 0.166 0.223 0.035

Table 2: Performance of Näıve Bayes classifier on subtasks.

Task MaP MaR MaF1 MiF1 Error
Level 0.326 0.319 0.322 0.468 0.328
Topic 0.029 0.027 0.027 0.067 0.041
Both 0.015 0.010 0.011 0.035 0.027

Table 3: Performance of baseline classifier on subtasks.

5 Conclusion

We have described a system that integrates a categorization framework into a
relational database. The results show it is possible to integrate categorization
techniques into the relational databases used by learning and content manage-
ment systems.

Two categorization algorithms were applied to the task of classifying mes-
sages sent to an educational ask-an-expert service. A Näıve Bayes classifier
outperformed the kNearest Neighbour classifier and was reasonably successful
at categorizing the messages. Future work includes testing classifiers that use
other machine learning models such as Support Vector Machines and Neural
Networks. The classification performance of Näıve Bayes was also measured us-
ing the 2-level hierarchy of the corpus. In this case, the highest success rate was
found in classifying messages by math topic, instead of school level. This task
could be useful on the unstructured data sent to ask-an-expert services such as
the one we discussed.
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