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A new reference collection of patent documents for training and testing automated categorization 
systems is established and described in detail. This collection is tailored for automating the 
attribution of international patent classification codes to patent applications and is made publicly 
available for future research work. We report the results of applying a variety of machine learning 
algorithms to the automated categorization of English-language patent documents. This procedure 
involves a complex hierarchical taxonomy, within which we classify documents into 114 classes 
and 451 subclasses. Several measures of categorization success are described and evaluated. We 
investigate how best to resolve the training problems related to the attribution of multiple 
classification codes to each patent document. 
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1 Introduction  
When a patent application is considered or submitted, the search for previous inventions in the 
field—known as prior art—relies crucially on accurate patent classification. The retrieval of 
patent documents is crucial to patent-issuing authorities, potential inventors, research and 
development units, and others concerned with the application or development of technology. The 
number of patent applications is currently rising rapidly worldwide, creating the need for an 
automated categorization system (Smith, 2002; Hull et al, 2001; Calvert & Makarov, 2001). In 
industry, patents are a major source for gathering intelligence about competitors’ activities, but 
this source necessitates sophisticated tools for meaningful data mining (Vachon, 2001). 

A number of authors have recently reported on procedures for automating patent 
classification using machine learning techniques. Chakrabarti et al (1997, 1998) developed a 
Bayesian hierarchical patent classification system into 12 subclasses organized in three levels. In 
these small-scale tests, the authors found that by accounting for the already-known classifications 
of cited patents, the effectiveness of the categorization could be much improved (Chakrabarti, 
Dom, & Indyk, 1998). Larkey (1998, 1999) has created a tool for attributing US patent codes 
based on a k-Nearest Neighbors (k-NN) approach. The inclusion of phrases during indexing is 
reported to have increased the system’s precision for patent searching but not for categorization 



(Larkey, 1998). The overall system precision is however not described. Kohnen et al (2000) 
achieved a precision of 60.6% when classifying patents into 21 categories in the course of 
creating a two-dimensional map of patent documents. Gey et al (2001) have created a web-based 
solution for attributing patent codes in the US and international systems, but have not performed 
detailed tests of precision. A comprehensive set of patent categorization tests is reported in Krier 
& Zaccà (2002). These authors organized a comparative study of various academic and 
commercial categorizers, but do not disclose detailed results. The participant with the best results 
has published his findings separately (Koster, 2001). Categorization is performed at the level of 
44 or 549 categories specific to the internal administration of the European Patent Office, with 
around 78% and 68% precision respectively when measured with a customized success criterion. 

To the best of our knowledge, the only system for automated patent categorization that is 
currently used in a production environment is the OWAKE system for routing patent applications 
to human classifiers within the Japanese Intellectual Property Cooperation Center (IPCC). Little, 
if anything, has been published in English about this customized system. It is primarily designed 
for handling the Japanese F-term patent codes and reportedly achieves a precision of 90% when 
classifying Japanese patents in 38 different technical groups. It uses a hierarchical classification 
scheme that combines a Rocchio-like algorithm for rough classification with a k-NN approach for 
refining the predicted category. It makes use of the full text of the patent but extracts keywords 
from the document based on an extensive customized Japanese dictionary (Kakimoto, 2003). 

Overall, published results on patent categorization often suffer from a lack of transparency or 
are focused on an industry-specific application. Instead, we seek here to describe a new open 
collection of documents made available to the research community for benchmark tests of 
automated categorization and research into patent classification across a wide variety of topics. 

The International Patent Classification (IPC) is a standard taxonomy developed and 
administered by the World Intellectual Property Organization (WIPO) for classifying patents and 
patent applications (WIPO, 1999). The IPC covers all areas of technology and is currently used 
by the industrial property offices of more than 90 countries. The use of patent documents and the 
IPC for research into automated categorization is interesting for several reasons. The IPC covers a 
range of topics that spans all human inventions and uses a diverse technical and scientific 
vocabulary. A large part of it is concerned with chemistry, mechanics, and electronics. 
Necessarily, the IPC is thus a complex, hierarchical taxonomy, which has been refined for 30 
years. Over 40 million documents have been classified in it worldwide. Furthermore, all domain 
experts in national and regional patent offices currently classify patent documents manually. 
These experts have an intimate knowledge of the IPC, and aim to provide excellent and consistent 
classifications. Finally, patent documents are often available in several languages. Professional 
translators have already performed large numbers of translations of patent documents. 

In this paper, we provide an overview of the complex taxonomy used for classifying patents 
internationally. We describe the collection of documents we have created to train and test 
automated categorization tools and report results obtained with a variety of algorithms and 
parameters. Our conclusions highlight the lessons learned. 

2 IPC Taxonomy 
The International Patent Classification (IPC) is a complex hierarchical classification system 
comprising sections, classes, subclasses and groups. The latest edition of the IPC contains eight 
sections, about 120 classes, about 630 subclasses, and approximately 69,000 groups.i The IPC 
divides all technological fields into sections designated by one of the capital letters A to H, 
according to: A: “Human necessities”; B: “Performing operations, transporting”; C: “Chemistry, 
metallurgy”; D: “Textiles, paper”; E: “Fixed constructions”; F: “Mechanical engineering, 
lighting, heating, weapons, blasting”; G: “Physics”; H: “Electricity”. Each section is subdivided 

  



into classes, whose symbols consist of the section symbol followed by a two-digit number, such 
as A01. In turn, each class is divided into several subclasses, whose symbols consist of the class 
symbol followed by a capital letter, for example, A01B. Table 1 shows a portion of the IPC 
specification at the start of Section A. An introduction to the taxonomy may be found in Adams 
(2000). In this work we do not make use of IPC subdivisions below subclass level, which consist 
of main groups and of a hierarchy of subgroups, as the number of categories becomes very large 
in comparison with the number of documents in the collection we exploit. 

The IPC exists in two authentic versions, English and French, which are published online 
(www.wipo.int/classifications) and in printed form by WIPO. Complete texts of the IPC are also 
prepared and published in other languages by national industrial property offices, which have 
published versions of the IPC in German, Spanish, Czech, Hungarian, Polish, Russian, Japanese, 
Korean, and Chinese. In the past, the IPC has been updated every 5 years, and is currently is its 
7th edition. Updates are currently mostly made at group and subgroup level. IPC classes and 
subclasses are essentially stable. In the future, the IPC will be divided in a fixed stable core and 
more dynamic advanced level that will be updated more frequently than at present (Calvert & 
Makarov, 2001). 

 
Section  SECTION A — HUMAN NECESSITIES 
Class A01 AGRICULTURE, FORESTRY, ANIMAL HUSBANDRY, 

HUNTING, TRAPPING, FISHING 
Subclass A01B SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, 

DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR 
IMPLEMENTS, IN GENERAL 

References for 
this subclass 

(making or covering furrows or holes for sowing, planting or manuring A01C 
5/00; machines for harvesting root crops A01D; mowers convertible to soil 
working apparatus or capable of soil working A01D 42/04; mowers combined 
with soil working implements A01D 43/12; soil working for engineering 
purposes E01, E02, E21) 

Table 1: Sample portion of the IPC taxonomy at the start of Section A 

The IPC is specified in extreme detail, covering 9 volumes in printed form. Patent 
categorization in the IPC is complicated by the following factors: 

IPC References: Many IPC categories contain references and notes, which serve to guide the 
classification procedure, as illustrated in Table 1. There are two main types of references: 
limitations of scope, which serve to restrict the patents classified in the category and which 
indicate related categories where some patents should preferably be placed, and guidance 
references, which list related categories where similar patents are classified. The references may 
list categories that are distant in the IPC hierarchy. In Table 1, for example, a reference to class 
E01 exists in subclass A01B. The IPC can thus be thought to contain a multitude of hyperlinks at 
all levels of category. 

Placement rules: Patent classification is governed by placement rules. In certain parts of the 
IPC, a last-place rule governs the classification of documents relating to two categories at the 
same hierarchical level, for example in class C07. This rule indicates that the second of two 
categories should always be selected if two are found to concord with the subject of the patent 
application. In other parts of the IPC, different specific rules hold, for example in subclass B32B 
where a first-place rule holds. 

Secondary codes: A majority of patents do not have a single main IPC code, but are also 
associated with a set of secondary classifications, relating to other aspects expressed in the patent. 
Experts classifying patents are usually free to attribute any number of additional codes. The 
taxonomy thus contains large overlapping categories. In some parts of the IPC, it is obligatory to 
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assign more than one category to a patent document if the patent document meets certain 
conditions. For example, in subclass A61K, a cosmetic preparation with therapeutic properties 
must also be classified in A61P. A list of such IPC categories is shown in Table 2. 

Vocabulary: The terms used in patents are quite unlike those in other documents, such as the 
news articles that have been widely used for past categorization benchmarks (Lewis et al, 2003). 
Many vague or general terms are often used in order to avoid narrowing the scope of the 
invention. For example, in the pharmaceutical industry, patent applications tend to recite all 
possible therapeutic uses for a given compound (Vachon, 2001). Combinations of general terms 
may have a special meaning that is important to identify. Patent documents also include acronyms 
and much new terminology (Kando, 2000). Furthermore, unlike news stories, patents are 
necessarily all different at a semantic level, as each must describe a new invention. This rule may 
complicate categorizer training. In addition, the IPC categories often cover a vast and sometimes 
disparate area, creating thereby a large vocabulary size in some categories. For example, class 
G09 refers to “Educating, Cryptography, Display, Advertising, Seals”. 

 
A61K → A61P 
B29C → B32B 
B29D → B32B 
C01 → A61P 

C07 → A61P 
C08 → A61P 
C08J → C08L 
C12N → A61P 

C12P → C07, C08 
C25B → C01, C07 

D06N → B32B 
G01V → G01S 

Table 2: List of IPC classes and subclasses included in WIPO-alpha (detailed in section 2.1) 
where double classifications are required, at least in some parts of the relevant IPC 
category and for patent applications that meet certain criteria.  A → B indicates that if a 
patent has main symbol A, it may also require additional symbol B. The reverse is not 
necessarily true. 

2.1 Document collection  
In order to perform automated patent categorization, we have collected a large database of 
suitable patent documents that we name WIPO-alpha. This collection is made publicly available 
on the WIPO website for future work by other researchers (www.wipo.int/ibis/datasets). 

The documents in the WIPO-alpha collection consist of patent applications submitted to 
WIPO under the Patent Cooperation Treaty (PCT). A patent application includes a title, a list of 
inventors, a list of applicant companies or individuals, an abstract, a claims section, and a long 
description. Accompanying figures may also be present, but these are not retained in the WIPO-
alpha collection. The documents in our collection are in English and were published between 
1998 and 2002. This restriction on dates is mainly governed by the availability of full-text PCT 
documents in electronic form at WIPO.  

The patent applications in the WIPO-alpha collection originate from a variety of countries 
worldwide. They have been classified in the IPC by PCT designated search authorities, which are 
a small number of large national or regional patent offices (such as the European Patent Office).  
The applicant can sometimes choose the search authority, but the identity of the search authority 
for each of our documents is not available. Patent classifiers at these institutions typically hold 
university degrees and are domain experts responsible for classifying documents in a small subset 
of the IPC. Because patent classifiers each cover separate areas, it is difficult to measure 
accurately the inter-judge agreement for PCT applications. While all IPC codes have been allotted 
with extreme care, it is possible that two patent offices would classify similar documents 
differently, particularly in categories with overlapping content. Agreement on classifications is 
primary guided by specifying categorization rules within the text of the IPC and through 
committee meetings at WIPO where delegates from all member states are invited to participate in 
the revisions of the IPC. It should be pointed out that the European, Japanese, and US patent 
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offices, which all classify PCT documents, each possess their own separate patent classification 
system and use the IPC as an additional taxonomy. 

The documents have been converted to electronic form by optical character recognition 
(OCR). Because of extensive automatic and manual checking of the resulting text, few cases of 
OCR errors are expected to subsist. Because patent applications are sometimes republished 
several times in slightly different form following modifications by the inventors, the WIPO-alpha 
collection may contain a residual number of duplicate or very similar records carried over from 
the source data. Extensive efforts, based on fields in our source database, have however been 
made to remove such (near) duplication. 

The document collection consists of a set of XML documents with a customized set of 
markup tags. A sample XML document from the WIPO-alpha collection is provided in Table 3. 
The document reference information in the <record> tag contains the country of origin in a cy 
attribute (equal to WO for the PCT documents in WIPO-alpha), a document reference number 
(dnum attribute), the kind of publication type (kind attribute), an application number and a 
publication number (an and pn respectively). Priority numbers in a <prs> tag indicate patent 
publication numbers and publication dates in various countries. 

A patent application always has a main IPC code, which is reported in the <ipcs> tag in the 
mc attribute. Additional secondary IPC codes are listed in the ic attribute of the <ipc> tags. 
The IPC class code is obtained by retaining the first three characters of the IPC symbol (D01, for 
the document in Table 3), while the subclass is obtained by retaining the first four characters of 
the IPC symbol (D01D, here). The IPC edition used for the classification is indicated as an ed 
attribute of the <ipcs> tag. We mainly use documents from IPC edition 7, but include some 
documents from edition 6 if their main IPC still exists in edition 7. 

Inventors and applicant companies are listed in <ins> and <pas> tags respectively. In the 
WIPO-alpha dataset, the title, abstract, claims, and full description are provided in English, in 
<tis>, <abs>, <cls>, <txts> tags respectively. The claims section is set in a special 
legalistic language and serves to determine the exact scope of the future patent. 

Submitted patent applications typically cite a number of earlier granted patents in related 
domains, for which the IPC categories are already known. This information may in principle also 
guide the categorization of the new application. Due to restrictions imposed by the source data 
exploited here, the list of cited patents are not specifically tagged in our XML data, but references 
to other documents are often found in the full description field.  

The WIPO-alpha collection consists of two randomly split non-overlapping sub-collections of 
patent applications, which are named training collection and test collection. The training 
collection consists of documents roughly evenly spread across the IPC main groups, subject to the 
restriction that each subclass contains between 20 and 2000 documents. The exact distribution is 
a reflection of the data at hand. The test collection consists of documents approximately 
distributed according to the frequency of a typical year's patent applications (year 2001 was used 
for this purpose), subject to the restriction that each subclass contains between 10 and 1000 
documents. The test collection is formed in this way, as it is then hoped to reflect the typical use a 
categorization system would undergo in a business production setting. We disregard categories 
with very few documents because some parts of the IPC describe technology that is not used 
frequently any more (or where novelties are increasingly rare) and because we thus hope to 
achieve a higher absolute number of correct predictions when categorizing a typical year’s 
documents.ii  

 

  



<?xml version="1.0" encoding="iso-8859-1"?>
<record cy="WO" an="US0024942" pn="WO012006320010322" dnum="0120063" kind="A1">
<prs> <pr prn="US19990914 60/153,825"/> </prs>
<ipcs ed="7" mc="D01D00106">

<ipc ic="D01F00110"></ipc>
<ipc ic="D01F00606"></ipc> </ipcs>

<ins> <in>COOK, Michael, Charles</in>
<in>MCDOWALL, Debra, Jean</in>
<in>STANO, Dana, Elizabeth</in> </ins>

<pas> <pa>KIMBERLY-CLARK WORLDWIDE, INC.</pa> </pas>
<tis> <ti xml:lang="EN">METHOD OF FORMING A TREATED FIBER AND A TREATED FIBER FORMED

THEREFROM</ti> </tis>
<abs> <ab xml:lang="EN">The present disclosure is directed to a method of forming a

treated fiber. A molten polymer is delivered to a fiber spinning assembly
adapted to form and distribute polymer streams. At least one treatment is
applied in a liquid state to at least one region on the surface of at least
one molten polymer stream within the fiber spinning assembly. A substantial
portion of the treatment remains on the surface of the resulting fiber
within the treated region. One or more regions on the surface of the molten
polymer may be treated with one or multiple treatments. The degree of
coverage may vary from little coverage to complete coverage of the fiber
surface. The treated regions may be in contact with one another or may be
separate and distinct. A nonwoven web may be produced with selectively
treated fiber regions by designing one or more fiber spinning assemblies to
treat selected fibers or to apply multiple treatments. The regions of the
nonwoven web may vary in treatment type, amount, or degree of coverage.</ab>
</abs>

<cls> <cl xml:lang="EN">We claim:
1. A method of forming a treated fiber comprising:
a) providing a molten polymer;
b) delivering said molten polymer to a fiber spinning assembly adapted to
form and distribute a stream of said molten polymer; andc) applying a
treatment in a liquid state to at least one region on the surface of said
molten polymer stream within said fiber spinning assembly, such that a
substantial portion of said treatment remains on the surface of the
resulting fiber within said treated region.2. The method of claim 1, wherein
said treatment has a boiling point of at least about 300°F / 149°C.
[… abridged …]

</cl> </cls>
<txts> <txt xml:lang="EN"> METHOD OF FORMING A TREATED FIBER AND A TREATED FIBER

FORMED THEREFROM
Field of the Invention
The present invention relates to a treated fiber and a method of forming a
treated fiber. Such treated fibers find many applications, for example, in
nonwoven fabrics, yarns, carpets, and otherwise where fibers having one or
more modified properties are desired.
Background of the Invention
Nonwoven fabrics are finding increasing use in various applications,
including personal care absorbent articles such as diapers, training pants,
incontinence garments, mattress pads, wipers, and feminine care products (e.
g., sanitary napkins), medical applications such as surgical drapes, gowns,
wound care dressings, and facemasks, articles of clothing or portions
thereof including industrial workwear and lab coats, household and
industrial operations including liquid and air filtration, and the like. It
is often desirable to modify the properties of the nonwoven fabric to
perform a function or meet a requirement for a particular application.
[… abridged …]
Having thus described the invention in detail, it should be apparent that
various modifications can be made in the present invention without departing
from the spirit and scope of the following claims.</txt> </txts>

</record>

Table 3: Sample patent record in WIPO-alpha, with abridged content 
  



The training and test distributions are shown in Figure 1. Except for a few outlying classes, 
the training and test collections follow similar distributions, indicating that IPC groups usually 
contain similar numbers of documents. However classes A61: “Medical or veterinary science, 
hygiene”, H04: “Electric communication technique”, G06: “computing, calculating, counting”, 
and C12: “Biochemistry” currently receive a disproportionately large number of applications. 
Because of the desire to distribute documents evenly across the taxonomy, not all IPC subclasses 
have been included in WIPO-alpha. If very few documents have a main IPC symbol in a given 
subclass, this subclass has not been included. The main IPC symbols of the WIPO-alpha 
collection are distributed in 114 classes and 451 subclasses (out of about 650 possible 
subclasses).iii Statistics of the document distribution at class and subclass levels are indicated in 
Table 4. 
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Figure 1: Distribution of training and test documents in WIPO-alpha at IPC class level. The 

numbers of training and test documents of a given class are aligned vertically. The classes 
are sorted by decreasing numbers of training documents. Classes with the largest numbers 
of training documents are labeled, as are those with many more test documents than 
training documents. Note that it is training subclasses that are restricted to 2000 
documents and this figure show the distribution per class. 

 
 

 Number of 
documents 

Average num. 
docs per class

Median num. 
docs per class

Average num. 
docs per 
subclass 

Median num. 
docs per 
subclass 

Train collection 46,324 406 213 102 61 

Test collection 28,926 253 78 64 19 

Total 75,250     

Table 4: WIPO-alpha document distribution statistics  

 

  



3 Methodology 
We make use of two automated categorization tools for a series of multi-classification ranking 
tasks: the “rainbow” package, part of the bow (bag-of-words) toolkit (McCallum, 1996), and the 
“SNoW” (sparse network of winnows) learning architecture (Carlson, 1999). The rainbow 
package implements multinomial Naïve Bayes (NB), k-Nearest Neighbors (k-NN), and Support 
Vector Machine (SVM) algorithms. Indexing is performed at word level, accounting for word 
frequencies in each document, 524 common stopwords are removed, word stemming is 
implemented with the Porter algorithm, and term selection is made on the basis of information 
gain. In preliminary tests, we have found that word stemming has little effect on the system 
effectiveness, but lowers runtimes. We thus make use of stemming in all rainbow results reported. 
The SNoW package is tailored for learning in large feature spaces and implements a sparse 
network of linear functions where the class labels are represented as linear functions over a 
common feature space (Carlson, 1999). A variation of the winnow update rule is used for 
training. SNoW is run with word occurrence indexing (binary weighting), which was found to 
produce better results than word frequency indexing, the same collection of stopwords as rainbow 
and without stemming. Word indexing for both packages disregards words with accented 
characters, which are sometimes present in the patent inventors and the applicant companies. 

For the NB and k-NN algorithms, we do not perform any term selection and use the full 
training vocabulary. Contrary to the experience reported in Lewis et al (2003), term selection 
performed with the k-NN algorithm did not significantly improve the system precision. The k-NN 
algorithm samples the 30 closest neighbors throughout all tests. The SVM algorithm uses a linear 
kernel and for performance reasons we limit the vocabulary to 20,000 words and at most 500 
documents per class (for a total of 29,712 training documents) or 100 documents per subclass (for 
a total of 28,635 training documents). The SNoW algorithm is run with a winnow promotion 
parameter equal to the inverse of the demotion parameter. These learning update parameters have 
been optimized from initial tests and are kept fixed throughout this report. SNoW learns by 
sequentially passing five times through the training documents. Our algorithms are trained with 
documents pre-classified on the basis of their main IPC code only.iv Each document thus appears 
only once in the training set, despite sometimes being associated with several IPC categories. 

We index various fields or collections of XML fields of the patent documents and then 
perform categorization tests on them. When collections of fields are indexed for each document, 
they are added to the same feature vector and receive the same weight. The titles (a) or the claims 
sections (b) are first used to describe each document, yielding vocabulary sizes of around 25,000 
and 200,000 words. Next, the first 300 words of the titles, inventors, applicants, abstracts, and 
descriptions (c) are indexed, covering about 200,000 words. This procedure normalizes the length 
of the training and test documents and was chosen for simplicity, computational efficiency, and 
highest precision, as detailed below. Finally, the titles, inventors, applicants, and abstracts only 
(d) are used for indexing each patent, for a vocabulary of about 150,000 words. The average 
length of the abstracts is about 130 words (Koster, 2001). One should note that the number of 
words varies strongly among patents. After stopword removal and without stemming, one 6,200-
word document only contained 275 different words, while one 1,400,000-word document 
contained 4,280 different words. There can thus be a significant amount of word repetition in 
patent applications. 

The vocabulary in the full description of all patents contains over 1,400,000 different words. 
Such diversity was found in small-scale tests to be detrimental to the effectiveness of the system, 
and yielded categorization precisions inferior to both the abstracts and the first 300 words. By far 
the largest contribution to vocabulary diversity is found in class C07: “Organic chemistry”, which 
notably contains tens of thousands of DNA sequences. Future studies might benefit from a 
filtering of these easily-identifiable words. 

  



The output from the categorizers consists of a ranked list of categories for each test 
document. In the following investigations, we consider three different evaluation measures to flag 
a categorization success, as shown in Figure 2. These evaluations serve different purposes, 
depending on whether an autonomous classifier is sought or whether a human-assistance tool is 
required. They have been chosen as they are felt most adapted to the case at hand, where 
documents are often associated with more than one category but always have a single main 
classification. The (micro-averaged) precision is defined here as the number of test documents 
that fulfill one of three conditions: In the top-prediction scheme (1), we compare the top predicted 
category with the main IPC category. In the three-guesses approach (2), we compare the top three 
categories predicted by the classifier, chosen on the basis of the confidence levels computed by 
the various algorithms, with the main IPC class. If a single match is found, the categorization is 
deemed successful. This measure is adapted to evaluating categorization assistance—where a user 
ultimately makes the decision of the correct category. In light of the categorization precisions 
presented below, this scenario seems most realistic in a business scenario. In this case, it is 
tolerable that the correct guess appears second or third in the list of suggestions. Finally, in the 
all-categories scheme (3), we compare the top prediction of the classifier with all categories 
associated with the document and present in the main IPC symbol and in additional IPC symbols. 
If a single match is found, the categorization is deemed successful. This evaluation approach was 
also used in Krier & Zaccà (2002). 
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Figure 2: Three measures of categorization success. In the top-prediction scheme, we compare the 

top predicted category with the main IPC symbol; in the three-guesses scheme, we 
compare the top three predicted categories with the main IPC symbol; in the all-
categories scheme, we compare the top predicted category with the main and additional 
IPC symbols of each document. 

4 Results and analysis 
We successively present results at IPC class level, where we investigate the best patent document 
fields to index, and at IPC sub-class level, where automated categorization would be more useful 
as the categories are more closely focused on a single topic. In each case, we evaluate the 
strengths and weaknesses of the algorithms tested. 

4.1 Class-level categorization 
In Table 5, we display the results of class-level categorizations of all test documents on the basis 
of (a) their titles, (b) the claims sections, and (c) the first 300 words, for the three evaluation 
measures.v We find that best performance is achieved when indexing the first 300 words of each 
document. This is similar to the result of Larkey (1999), who reports best performance when 
indexing the title, abstract, first 20 lines of the description, and claims, with the titles receiving 
three times as much weight as the others. The claims section provides consistently poorer results, 
despite a vocabulary of similar size. The titles, despite being a single-line in length, provide a 
remarkably good result, confirming Larkey’s high weighting attributed to them. 
  



 

Indexing fields Evaluation measure Naïve Bayes k-NN SVM SNoW 

(a) Titles (1) Top-prediction 45% 33% - 45% 

(b) Claims (1) Top-prediction 50% 18% 45% 48% 

(c) First 300 words (1) Top-prediction 55% 51% 55% 51% 

(a) Titles (2) Three-guesses 66% 52% - 64% 

(b) Claims (2) Three-guesses 72% 35% 63% 74% 

(c) First 300 words (2) Three-guesses 79% 77% 73% 73% 

(a) Titles (3) All-categories 52% 38% - 50% 

(b) Claims (3) All-categories 57% 23% 52% 54% 

(c) First 300 words (3) All-categories 63% 58% 62% 58% 

Table 5: Categorization precision at IPC class level, for categorization of all test documents. The 
SVM algorithm uses a smaller vocabulary and is limited to 500 training examples per 
class. The SVM runs were unsuccessful on titles.   

Although the precisions of the Naïve Bayes and SVM algorithms appear similar when 
categorizing with the first 300 words, one should not forget that the SVM algorithm is only using 
two thirds of the total training set. The distribution of errors of these two algorithms is strikingly 
different, as shown in panels A and B respectively of Figure 3, where we display a fraction of the 
confusion matrix computed with the top-prediction measure, in a part of the IPC that has a 
particularly large number of errors. In panel A, we note a structure in columns for the NB 
algorithm, with a high number of errors in classes that contain large numbers of training 
documents. The NB algorithm thus tends to erroneously aggregate documents from small classes 
into the larger ones. However, for the SVM algorithm, the confusion matrix in panel B displays a 
structure in lines, indicating that it tends to distribute documents from large classes into the 
smaller ones. This may result partly from the fact that large classes have not been trained with all 
available documents. We observe in Figure 3 a significant amount of confusion between sections 
G and H, a feature not seen strongly in others parts of the IPC. We also note, coincidentally, that 
the instructions in the IPC indicate that section G may be the hardest to classify manually since 
distinctions between fields rest on intentions of the user, rather than constructional differences or 
manners of use, and because subjects are often combinations of elements (WIPO, 1999). 
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A. G01 G02 3 G04 G05 G06 G07 G08 G09 G10 G11 G21 H01 H02 H03 H04 H05 C. G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G21 H01 H02 H03 H04 H05
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G10 16 1 8 3 12 82 G10 13 5 5 1 11 13 7 1 13 16 2 6 19 17 3
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H02 11 84 173 21 9 H02 22 16 6 22 14 6 1 7 6 18 6 38 33 19 35
H03 10 1 25 2 289 41 H03 26 17 6 3 31 17 8 19 9 19 25 2 23 33 32 26
H04 131 6 45 5 5 10 80 5 211 2818 H04 27 17 11 2 18 47 25 25 18 17 25 19 19 32 11
H05 15 186 9 2 5 4 H05 19 16 13 18 6 4 1 1 3 11 8 41 35 26 11

B. G01 G02 3 G04 G05 G06 G07 G08 G09 G10 G11 G21 H01 H02 H03 H04 H05 D. G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G21 H01 H02 H03 H04 H05
G01 681 33 22 23 46 7 32 13 10 21 9 32 21 22 18 18 G01 33 18 3 28 86 4 51 7 6 18 7 13 22 25 75 19
G02 12 319 38 2 2 2 1 13 2 8 15 3 5 9 1 G02 33 41 1 6 15 1 1 47 8 2 35 4
G03 2 5 117 1 2 2 5 2 G03 18 41 11 1 9 1 4 34 2 48 6
G04 7 1 G04 3 1 1 2 1 1 2 1
G05 5 1 1 70 5 1 2 7 3 5 1 G05 28 18 3 6 3 3 2 4 11 4 14
G06 41 10 36 37 594 100 42 65 7 59 1 9 18 33 197 9 G06 86 6 11 18 3 23 34 6 33 1 19 9 31 85 1
G07 5 18 138 5 3 3 3 17 G07 4 1 1 3 3 6 3 2 1 9
G08 12 2 4 1 2 7 3 67 3 4 2 2 5 5 1 G08 51 2 6 23 6 9 1 14 5 4 32 1
G09 4 9 8 5 19 5 2 97 4 2 1 2 13 6 G09 7 15 9 1 3 34 3 9 3 1 1 6 17 3
G10 3 2 1 1 5 92 2 10 14 G10 6 1 6 3 1 4 1 6 14
G11 5 5 3 1 4 2 260 5 2 12 6 1 G11 18 1 1 1 3 33 2 1 1 1 13 6 16 35 2
G21 1 1 1 26 1 1 2 G21 7 4 1 5
H01 25 55 24 1 9 10 1 5 13 3 22 5 671 45 53 21 66 H01 13 47 34 2 2 19 14 1 4 13 5 96 47 54 9
H02 6 12 2 1 3 3 24 205 11 1 6 H02 22 8 2 4 9 5 1 6 96 22 11 22
H03 5 1 10 8 2 2 9 10 7 6 265 23 6 H03 25 2 1 11 31 1 4 6 6 16 47 22 1 8
H04 52 54 63 15 168 54 73 38 35 53 2 47 30 258 2238 11 H04 75 35 48 4 85 9 32 17 14 35 54 11 1 11
H05 4 2 5 5 1 6 3 1 25 7 4 3 107 H05 19 4 6 14 1 1 3 2 7 9 22 8 11

7

Figure 3: Panels A and B: Extracts of the confusion matrices in sections G and H of the IPC class-
level categorization with first 300 words, using the NB and SVM algorithms respectively. 
The row is the real category and the column is the predicted category; the numbers in the 
matrices indicate the absolute numbers of documents categorized right (numbers on the 
diagonal) and wrong (off-diagonal values). Panels C and D: Predicted category 
similarities based on the vocabulary similarity of the training documents and the 
distribution of training documents, respectively. See main text for details. In all cases, 
shading indicates high off-diagonal values. 

 
The identification of IPC areas where automated categorization is difficult depends to a 

certain extent on the algorithm employed. In Figure 3, we also show two models that nevertheless 
predict the distribution of errors with some success. The first model is based on the vocabulary of 
the training documents: for each class, we compute the 100 words with the highest odds ratio. In 
panel C of Figure 3, we report how many of these discriminating words are in common between 
the IPC classes. The second model is based on the distribution of documents: by examining both 
the main and the additional IPC codes of all training documents, we count how many documents 
are simultaneously associated with two classes, and report these numbers in panel D of Figure 3. 
Both models necessarily result in symmetric matrices, and highlight similar areas of the IPC 
where difficulties are expected. The results of the SVM algorithm are particularly well predicted.  

In Figure 4, we display how the system precision changes when a fraction of the test 
documents are classified. Results are reported for the SVM algorithm on the first 300 words. We 
filter documents for categorization on the basis of the confidence level of the top predicted 

  



category. As the fraction of documents classified is reduced from 100%, the precision increases, 
indicating that the algorithm is successful at predicting its own precision. If 80% of documents 
are classified, the categorization is successful in 78% of cases when using the three-guesses 
measure. 
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Figure 4: Variation of categorization precision with the fraction of documents classified for SVM 

class-level categorization using the first 300 words. Results are reported for the three 
measures of categorization success. 

4.2 Subclass categorization 
In Table 6, we display the results of various algorithms applied to IPC subclass categorization of 
all test documents, on the basis of: (c) the first 300 words of each document; (d) their titles, 
inventors, applicants, and abstracts. Because of computational limitations, the SVM algorithm 
used the first 150 words, rather than the first 300 words. We note that despite being trained with 
fewer documents, using a smaller vocabulary, and shorter documents, the SVM algorithm is most 
successful at predicting the main IPC subclass, or any of the real attributed subclasses. If three 
guesses are allowed for the main subclass, the k-NN algorithm performs best.  

Except for the SNoW algorithm, it is more advantageous to use the first few hundred words 
of the document than the abstracts for describing each document. We have also performed hybrid 
tests with the Naive Bayes algorithm, training with the first 300 words and testing with abstracts. 
In this way, we hoped to build good word statistics in each category, and simultaneously benefit 
during testing from the human selection implicit in the abstracts. However, the resulting 
accuracies were intermediate between those using abstracts for training and testing and those 
using the first 300 words for training and testing. It is thus better to test also with the first 300 
words. 

Some of our training documents have multiple IPC codes, thus implicitly belonging to several 
categories (even though they are effectively each used only once for training, according to their 
main IPC symbol). We attempt to improve on our results by retaining in the training set only 
those documents that belong to a single subclass,vi yielding 30,329 training examples overall. The 
results are shown in Table 7, in comparison with earlier results. Filtering the training set in this 
way improves the Naïve Bayes, SVM, and SNoW precision by 1-2 percent. By contrast, the k-

  



NN algorithm performs slightly worse with this approach. Since the SVM algorithm relies on 
outlying documents to separate categories, it benefits from the better category separation we 
impose. By contrast, the k-NN algorithm relies on dense training examples for accurate 
categorization, and thus performs worse when the training examples are reduced in this way. 

 

Indexing fields Evaluation measure Naïve Bayes k-NN SVM SNoW 

(c) First 300 words (1) Top-prediction 33% 39% 41% 36% 

(d) Abstracts (1) Top-prediction 28% 26% 34% 36% 

(c) First 300 words (2) Three-guesses 53% 62% 59% 56% 

(d) Abstracts (2) Three-guesses 47% 45% 52% 58% 

(c) First 300 words (3) All-categories 41% 46% 48% 43% 

(d) Abstracts (3) All-categories 35% 32% 41% 44% 

Table 6: Categorization precision at IPC subclass level, for categorization of all test documents. 
Results for SVM are obtained when indexing the first 150 words of each document, 
rather than the first 300 words. In addition, the SVM algorithm uses a smaller vocabulary 
and is limited to 100 training documents per subclass. 

 

Indexing fields Evaluation measure Training set Naïve 
Bayes 

k-NN SVM SNoW 

(c) First 300 words (1) Top-prediction All 33% 39% 41% 36% 

(c) First 300 words (1) Top-prediction Single subclass 34% 38% 42% 37% 

(c) First 300 words (2) Three-guesses All 53% 62% 59% 56% 

(c) First 300 words (2) Three-guesses Single subclass 53% 61% 59% 57% 

(c) First 300 words (3) All-categories All 41% 46% 48% 43% 

(c) First 300 words (3) All-categories Single subclass 43% 46% 50% 45% 

Table 7: Comparison between categorization precision at sub-class level when training with all 
documents and when training with single-subclass documents. Results for SVM are 
obtained when indexing the first 150 words of each document, rather than the first 300 
words. In addition, the SVM algorithm uses a smaller vocabulary and is limited to 100 
training documents per subclass. 

As the SVM algorithm performs better with single-subclass documents, we now train an 
SVM categorizer with all such documents in WIPO-alpha. We obtain the following accuracies: 
46% (top-prediction), 65% (three-guesses), and 54% (all-categories), when all test documents are 
classified, as shown in Figure 5. These numbers improve on those shown in Table 7 by making 
use of all single-subclass training examples and represent our best results at IPC subclass level. 
We can compare them with those published by Krier and Zaccà (2002). They obtained an 
accuracy of 61% at subclass level with the all-categories measure when using a commercial 
product implementing a k-NN algorithm. This result is obtained with a training set containing 
68,416 different documents (Koster, 2001), 47% more than available in WIPO-alpha. This 
comparison indicates that our training set should be extended for better results. 
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Figure 5: Variation of categorization precision with the fraction of documents classified for SVM 

subclass-level categorization using the first 150 words following training with all single 
subclass documents. Results are reported for the three measures of categorization 
success. 

5 Conclusions and outlook 
Patent categorization provides a demanding test scenario for machine learning algorithms because 
of the nature of the taxonomy and of the documents within. Nevertheless, our results show that 
automation can help users unfamiliar with all the complexities of the International Patent 
Classification system.  

Overall, we find the support vector machine algorithm outperforms the Naïve Bayes, k-NN, 
and SNoW algorithms under similar conditions, particularly for categorization at IPC subclass 
level. However, because it is computationally expensive to train, it may be necessary to reduce 
the training complexity, by limiting the number of training documents, by term selection, and/or 
by limiting the length of the documents. 

Categorization precisions observed at IPC subclass level are below those found for class-level 
categorization and are best performed by indexing the first 300 words of each document. Training 
with single-subclass documents improves results for the Naïve Bayes, SNoW, and SVM 
algorithms, but does not do so for the k-NN approach. Training with the first 300 words of each 
document and testing with abstracts provides no advantage over testing with 300 words per 
document. 

Because patent classification at patent-issuing authorities must be performed with excellent 
precision, the combinations of algorithms and training collections reported here do not appear 
sufficient for building a fully-automated system for the categorization of all patent applications. 
Nevertheless, the results reported bear well for the development of a patent categorization 
assistance system, which would suggest a small number of IPC codes to a user. In view of the 
accuracies reported above, a production system should probably be able to suggest more than 
three subclasses for each document. This is expected to provide a large increase in accuracy, at 
the expense of user inconvenience. A real system should also evaluate the confidence levels of 
the categories suggested and withhold any predictions if these prove too low. It is WIPO’s 

  



ambition to provide a semi-automated tool for patent classification in the very near future and 
work in this direction is ongoing. 

We are now working to establish a larger multilingual collection of patent documents to 
improve on results presented here. This collection should allow comparisons of automated 
categorization difficulty when classifying documents in different languages into the same 
taxonomy. It is also expected to cover a larger proportion of the IPC, including less frequently 
used classes and subclasses, thereby creating more difficult test scenarios. By making our datasets 
publicly available, we hope to promote further research in this area. 
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i In this paper, the terms “section”, “class” and “subclass” refer to these specific IPC subdivisions. When 

referring to a generic IPC subdivision of any type, we use the word “category”. 
ii The number of categories that should be retained to maximize the absolute number of correct predictions 

is a non-trivial quantity that would need repeated categorization experiments to determine exactly. 
iii Secondary IPC symbols may contain additional classes and subclasses. 
iv Tests performed with the rainbow NB algorithm showed that the precision was lowered when training 

was made on the basis of both the main IPC code and all additional IPC codes of each patent document. 
v For tests at class level, the first 300 words do not include the inventors. 
vi These documents form a superset of the documents possessing a single IPC code. 
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