
ABSTRACT

Prototype theory is a cognitive theory of categorization that
describes many aspects of MDSOC better than the classical
theory of hierarchical categories.  Prototype theory implies
that composition is a more natural means of specifying
components than is inheritance.  Prototypes are useful in
organizing information and workflows in component
composition systems.

1. INTRODUCTION

Multidimensional separation of concerns (MDSOC) [6]
inherently entails problems of categorization.  Software
units are categorized into one or more concerns, concerns
are grouped into dimensions or higher-level concerns.
Categorization provides MDSOC with a means for
organizing, describing, accessing, and operating on
software artifacts, in particular with parts (or subparts) of
artifacts related to particular concerns.

In the context of MDSOC, the use of categories is highly
technical, but categorization is fundamentally a natural
human cognitive process.  There has been considerable
work on categorization outside of computer science in the
areas of cognitive science, anthropology, linguistics, and
philosophy.1  Work in these fields over the past decades has
lead to a view of categorization known as “prototype
theory” [3], in which categories are defined by prototypical
members.  Prototype theory stands in contrast to the more
traditional (“classical”) view of categorization in terms of
taxonomic hierarchies of well-defined categories.

In this paper we investigate the applicability of such
categorization theories, particularly prototype theory, to
MDSOC.  Section 2 summarizes the theory and section 3
describes the development context in which we consider it.
Sections 4 and 5 describe applications of the theory and
remaining categorization issues, respectively.  Section 6
indicates how we are using prototypes to simplify the
design of a software composition system, while Section 8
presents a summary and our conclusions.

2. PROTOTYPE THEORY OF
CATEGORIZATION

The prototype theory of categorization is based on the work
of many scholars and researchers.  To present it briefly, we
quote in its entirety a summary by Lakoff (bracketed
comments added) [3]:

� Some categories, like tall man or red, are graded;
that is, they have inherent degrees of membership,
fuzzy boundaries, and central members whose
degree of membership (on a scale of zero to one)
is one.

� Other categories, like bird, have clear boundaries;
but within those boundaries there are graded
prototype effects--some category members are
better examples of the category than others.  [For
example, wrt birds:  {robin, sparrow} > {owl, duck}
> {penguin, ostrich}.]

� Categories are not organized just in terms of
simple taxonomic hierarchies.  Instead categories
“in the middle” of a hierarchy are the most basic,
relative to a variety of psychological criteria:  
gestalt perception, the ability to form a mental
image, motor interactions, and ease of learning,
remembering, and use.  Most knowledge is
organized at this level.  [Categories above and
below the basic level may be added but these are
more intellectual than cognitive constructs.]

� The basic level depends upon perceived
part-whole structure and corresponding knowledge
about how the parts function relative to the whole.

� Categories are organized into systems with
contrasting elements.

� Human categories are not objectively “in the
world”, external to human beings.  At least some
categories are embodied.  [That is, they have a
physiological basis or manifestation.]  Color
categories, for example, are determined jointly by
the external physical world, human biology, the
human mind, plus cultural considerations.
Basic-level structure depends on human

Applicability of Categorization Theory to Multidimensional
Separation of Concerns  

Stanley M. Sutton Jr. and Isabelle Rouvellou
IBM T. J. Watson Research Center

Hawthorne, NY  10532
{suttonsm, rouvellou}@us.ibm.com

1 We deliberately omit mathematical category theory, although it, too, may have applications to MDSOC.



perception, imaging capacity, motor capabilities,
etc.

� The properties relevant to the description of
categories are interactional properties, properties
characterizable only in terms of the interaction of
human beings as part of their environment.
Prototypical members of categories are sometimes
describable in terms of clusters of such
interactional properties.  These clusters act as
gestalts:  the cluster as a whole is psychologically
simpler than its parts.

� Prototype effects, that is, asymmetries among
category members such as goodness-of-example
judgments, are superficial phenomena which may
have many sources.

A further point is that the members of a category need not
share any common characteristic.  They may be grouped by
“family resemblance”, for example, such that each member
shares some characteristics with some other members.

In contrast, the classical view of categorization is
hierarchically oriented, with membership in a category
based on clearly defined necessary and sufficient
conditions.  As a consequence, there are certain properties
that all members of a category have in common, and no
member of a category is a better representative of the
category than any other.

We believe that it is worthwhile to investigate the prototype
theory of categorization for purposes of MDSOC for two
main reasons:
� It reflects issues or conditions that we have

encountered in trying to organize software concerns
� It acknowledges and accommodates the human factors

affecting categorization, which we necessarily bring to
MDSOC

We also recognize that there are reasons that the prototype
theory might not apply to MDSOC:
� Software is “unnatural” or, more particularly, artificial

and abstract
� Hierarchy is important in software, for managing

complexity and for other purposes
� Multiple dimensions of classification apply

simultaneously (a condition not addressed in the
prototype or classical theories)

In the remainder of this paper we consider how, and how
well, prototype theory may address MDSOC, then identify
limitations or complications of the theory in the context of
MDSOC, and finally describe how we are applying the
notion of prototypes to simplify the design of a component
composition system.

3. CONTEXT OF CONCERN MODELING

We are investigating the use of MDSOC-based
compositional techniques to create customized software
components, especially systems components.  We are using
a cache as our main example.  In previous work [4] we have
described the concerns associated with the design of a
general-purpose software cache, the GPS cache [2].  We are
now modeling concerns in the code of the GPS cache,
specifically its Java implementation.  One of our objectives
is to be able to start from a pool of relatively small Java
units and compose a cache that is more or less equivalent to
the GPS cache in terms of the concerns addressed.  Another
is to be able to generate specialized subsets and variants of
the cache, where the specializations are based on selected
concerns.  We are using Hyper/J [1] as our composition
tool.

In terms of the Cosmos concern-space modeling schema
[5], our analysis of concerns in the design of the cache dealt
entirely with logical concerns (representing concepts,
properties, issues), whereas our work with the
implementation deals with concerns that are both logical
and physical (representing software units).  The association
of logical concerns to physical concerns, for example, the
association of particular properties, functions, behaviors,
and states to particular Java classes, methods, and variables,
is a major part of concern-space modeling for composing
component implementations.

In designing an application to support the specification and
generation of customized caches, we face a number of
fundamental questions that can be viewed as categorical.
For example:
� For what categories of component (caches or

otherwise) do we want to support composition?
� How do we categorize a cache as a component?
� What categories of concern are important in

characterizing caches, either to distinguish them from
other types of components, or to describe useful
customizations within the category?

� How do different categories of concern relate?  How
are concerns in different categories correlated?

As a result of considering these and related questions, we
can make some preliminary observations about the
applicability of prototype theory to component composition
based on MDSOC.



4. Applicability

Virtually all of the general characteristics of the prototype
theory of categorization have some application to, or
corresponding aspect in, software composition based on
MDSOC.

Graded categories:  The types of software components
such as caches may qualify as graded categories, that is,
ones for which there are fuzzy boundaries and degrees of
membership.  Compared to an ideal notion of a cache, a
prospective cache component may be more than a cache
(having additional functions and features, even to the extent
that “cacheness” becomes a minor part of its character), less
than a cache (lacking in some features, for example,
expiration times, that are commonly considered integral to a
cache), or just different (for example, using different
replacement algorithms or access disciplines).  Thus it
seems that any attempt to define “cache” precisely will be at
least somewhat arbitrary.

Additionally, some of the categories of concern that apply
to caches and other software components are also graded,
especially properties.  Examples include performance (fast
versus slow), size (small versus large), usability (easy
versus hard), maintainability (easy versus hard), and
scalability (scalable versus not scalable).  As we have noted
previously [4], this makes it difficult to categorize software
in some dimensions and to capture and analyze
relationships among some concerns and associated units.

Definite prototypic categories:  Not all of the categories
of concern in the cache are graded with fuzzy boundaries.
For example, in the functionality dimension, we have been
able to divide operations on the cache and related classes
into definite categories without ambiguity.  For example,
we have distinguished operations that affect the state of the
cache in terms of the objects it contains (e.g., add, delete,
retrieve, and update), operations related to inter-object
dependencies, operations related to enabling and disabling
the cache, and others.  Within these groups, however, it
seems that not all operations are created equal.  For
example, with respect to the core operations, it seems that
adding, retrieving, and deleting objects are most central,
that updating an object is somewhat less central, and that an
operation to purge the cache is less central still (although
not necessarily less useful for that).  With respect to the
cache-enabling operations, the operation to enable or
disable the cache is most central, whereas the operation to
test whether the cache is enabled or disabled is less central.
A similar situation exists with respect to behaviors.

Basic levels of categorization:  Our interest in components
with the granularity of a cache may imply that this level of
organization of software reflects a “basic level” of

categorization.  A basic level of categorization is one that is
most natural and generally useful for organizing concepts,
knowledge, and activities.  When we think of a cache or
comparable component, we think of a module that
embodies a useful set of functionality, that exhibits
properties and behaviors as a whole, that can be plugged
into and used directly in a range of applications, and that is
a natural unit of work with respect to software engineering
practices such as design, coding, testing, configuration,
versioning, release, reuse, and so on.

In traditional object-oriented approaches to component
definition, a useful component such as a cache might be
defined by inheritance through several levels of more
general classes; however, these more general classes are
likely to be too general for direct use by applications and
may even be abstract.  Components below this level may be
too limited or specific to be useful in many applications.

The significance of basic levels of categorization in
cognition and language may lend support to concern-based
compositional approaches to software development.  Since
these approaches can operate directly at the level of useful
components, they may be more natural, and thus perhaps
more workable, than approaches based on the classical
notion of hierarchical categorization and inheritance.

Part-whole structure:  A software component, such as a
cache, is a whole that combines a number of parts, such as
operations and elements of state.  The component as a
whole is understood in terms of these parts and the way in
which they interact to produce an overall effect.  For
example, an attempt to retrieve an object that has not been
added to a cache should fail, whereas an attempt to retrieve
an object that has been added to a cache should succeed
(ignoring object expiration and other effects that may cause
object to be removed implicitly).  Moreover, types of
components with similar parts may be distinguished by the
way in which those parts interact in their contribution to the
whole.  For example, both caches and buffers may have
operations to add and retrieve objects, but their behaviors
over an extended period or sequence of operations may
vary due to differences in factors such as replacement
algorithms, access protocols, object expiration, and so on.

The importance of part-whole structures in categorization
may lend further support for composition as a natural
approach to software development.  Composition is about
assembling parts into wholes and orchestrating their
interactions.  Component specialization by selective
composition is a direct way to obtain a whole comprising
just the parts of interest.  In contrast, inheritance-based
approaches are not about assembling parts but rather about
successive refinements or extensions of components.  The
result may not appear as an integrated whole because its



parts (and their interactions) may not be found or
understood locally; rather they may need to be located and
comprehended over a sequence of stages.

Other features:  Several other features of prototype theory
also apply to MDSOC, although space limitations preclude
detailed discussion here.  The importance of contrast
between categories has implications for the selection of
concerns within dimensions.  Non-objectivity is reflected in
subjective and context-dependent concerns.  Interactions
with components in a software-engineering sense may serve
to categorize roles for artifacts in development methods.
And use or convention may give rise to a variety of
superficial (non-inherent) prototype effects.

5. Complications

Although many aspects of the MDSOC approach to
software composition can be described in terms of
prototype theory, there remain problems of categorization
to be resolved.

Approximate categories:  It is natural to try to
characterize a system for composing components in terms
of the kinds of components that can be composed using it.
We find it convenient to say that we are designing a system
for composing caches.  However, that characterization must
be understood as an approximation, for several reasons:
� We have no general test for “cacheness” that we can

apply to prospective products (in other words, “cache”
is a graded category with fuzzy boundaries)

� The composition technology (Hyper/J) is not
cache-specific, and there are limits on the extent to
which processes for the use of that technology can
restrict the categories of products produced with it.

� The code units from which we compose products, even
those extracted from a cache, can be used in other
kinds of components (or in components that are over-
or under-qualified to be classified as a cache)

� At least part of most user’s notions of a cache
incorporate aspects related to use (e.g., in locally
storing remotely obtained data) that are beyond the
control of a composition system

Thus, while “cache” may serve as a useful notional
prototype for the kind of component for which we want to
support composition, it does not suggest the range of
components for which we might actually be able to support
composition or the range of applications for which those
components might be suitable.  Consequently, we face the
question of how we can characterize the products of our
system without being simplistic or unduly restrictive.

Interaction at multiple levels:  Prototype theory states that
we tend to categorize entities at a certain level of generality
that corresponds to the level at which we most naturally

interact with or think about them.  Software composition
involves working with software components at multiple
levels of multiple types, including levels of categorization,
granularity, complexity, and completeness.  Moreover,
levels of one sort may not correlate with levels of another.

One example is that developers must often reason about
effects on the whole based on features of the parts (or,
conversely, understand parts in terms of their potential
effect in the whole).  To complicate this, the whole and
parts may be at different levels of granularity (as a class
may be composed from individual members), the parts may
be selected based on different types of concerns
representing different dimensions of categorization (some
methods selected by function, some for particular
behaviors, and some to support specific properties), and
parts may be specified at different levels of generality (we
may select all behaviors that support correctness, specific
behaviors that support robustness, and all behaviors that
support generality except certain specific behaviors).

Thus, counter to our natural ability to reason and work best
at a particular level on a particular scale, developers must
reason and work at and across different levels on different
scales.  A challenge for MDSOC is helping developers to
traverse and span such categorical gaps.  One of the goals
of Cosmos [5], for example, is to capture different levels of
generality within different dimensions of concern and to
allow these to be meaningfully interrelated.

Multiple dimensions of categorization:  Both the
prototype and classical theories of categorization address
classification within a single dimension or scheme
(although an individual classification may depend on a
combination of multiple factors).  Multidimensional
separation of concerns, of course, addresses multiple
dimensions of classification individually.  The prototype
and classical theories provide no direct guidance for
accommodating multiple dimensions in a single model or
analysis.  When a component is described in terms of
multiple dimensions it is not clear how these should be
organized and presented.  For example, for the cache, we
have independent dimensions of concern (top-level
concerns in the Cosmos sense) relating to classes,
functionality, behavior, state, and properties such as
performance, correctness, safety, and configurability.  None
of these is a priori a root dimension for all (or any)
purposes, and conceivably any of them may be of primary
interest to a developer in a particular context.

A further complication that arises especially in the case of
software composition is that the association of categories in
different dimensions is not fixed.  In other words, the
bindings between categories are potentially variable.  For
example, in describing an existing cache, we can categorize



elements definitely with respect to class, operations, state,
behavior, and specific properties, and the correlations
between these are established.  In contrast, when composing
a new cache, we may have the option to vary the classes
involved, the methods and variables belonging to those
classes, the behaviors associated to the methods and
classes, the properties resulting for the classes and methods,
and so on. The correlations between dimensions vary, and it
is not generally possible to systematically describe a
member of one category of one dimension in terms of
categories in other dimensions.

Although theories of categorization do not contribute much
directly to the management of multiple dimensions of
concern, the idea of multiple dimensions of concern may
contribute to the prototype theory of categorization.  In
particular, the applicability of multiple dimensions of
concern may be a source of asymmetric or graded effects in
categories based on prototypes.  For example, our sense of
the goodness-of-fit of a component in a category such as
“cache” may be affected by dimensions of concern other
than those in terms of which a category is defined. For
example, a general-purpose cache, with a rich variety of
features, may clearly qualify as a cache, but it may be seen
as a more peripheral sort of cache than one with a more
typical range of features.  (Does the prototypical cache
include logging or inter-object dependency management?
Probably not, but a cache that offers these is still a cache.)

Decoupling of interaction:  The prototype theory of
categorization places a strong emphasis on interactional
properties as the basis for classification.  Those are
properties related to human interactions with a categorized
entity.  With software components, we can also consider
programmatic interactions, that is, interactions within a
program.  However, such interactions may not always be a
useful basis for categorization.  For example, many data
structures offer substantially comparable interfaces that
allow for data to be written, read, updated, deleted, etc.
The interfaces for a cache, a buffer, and a queue might be
virtually identical in this respect (with that for a stack not
very different, if at all).  Our interactions with these data
structures are all basically the same.  This general sort of
interaction may distinguish data structures from other kinds
of components, but it fails to make distinctions between
types of data structures that are different in other significant
ways (for example, access disciplines and effects of
operations on structure state).

Related to interactions are the uses to which components
(or other elements) may be put in a program.  For example,
any data structure or variable may be used by an application
as a cache, depending on what needs to be cached or what
variables or structures are convenient for that purpose.  A
single integer value that is difficult to obtain or compute

might be cached in a local variable.  However, when we
consider a system to support the composition of customized
caches, we do not have in mind a system that will allow the
composition of arbitrary variables or data structures.  We
intend to support the composition of components that are
relatively restricted in many dimensions.

Conversely, the purposes for which a component may be
used by a program are not in general restricted.  A
component that is intended to serve as a cache may provide
a useful data structure in other roles.  For example, the GPS
cache may be used as a store for local data by an
application that can benefit from features such as logging,
collection of usage statistics, or dependency management.

Overall, interactions or uses seem to provide a not very
useful basis for categorization of software components for
many purposes.  The multidimensional nature of software
largely accounts for this, as categorizations in terms of
interaction or use often do not correlate well with
categorizations in other dimensions that may be of more
importance.  This also relates to our need to work with (and
to think about) software at different levels of classification.

6. Role in the Design of a System to Support
Multidimensional Composition 

In considering the design of a system to support the
specification and composition of customized software
components, we initially faced a number of questions
related to the scope of the system.  For example, what was
the range of component for which we wanted to support
composition, and what would it mean to say we support the
composition of a particular kind of component?  Answers to
such questions have significant implications for the
prospective system in the areas of concern-space modeling,
related information modeling, and workflow.

To simplify the design space, we decided to focus initially
on caches.  However, that still left many design decisions
open, as the notion of a cache is not well defined, what
support we would provide for composition of caches would
not necessarily be restricted to caches, and there are many
ways of approaching the customization of a cache (or other
component) by selective composition.

To further constrain the design space, we have adopted an
approach based on strong, flexible prototyping.  More
specifically, we have identified a particular set of classes
that we take as prototypical of a software cache.  We call
this the “application model” for the cache, as it represents
an idealized model of the caches produced by the system, as
seen by an application.  For the application model classes,
we have introduced a set (initially fixed) of methods, states



elements, behaviors, and associated properties that can be
variously composed into the model classes.  

The approach is strong in that classes that do not conform
to the model cannot be produced, and their methods,
behaviors, and so on are limited to combinations of those
provided.  The approach is flexible in that many
combinations of the provided elements are possible
(including some that may push the limits of what we may
ordinarily think of as a cache).

The prototypical classes of the application model provide a
framework for organizing information related to concerns in
other dimensions (e.g., operations, behaviors, properties,
etc.).  Classes may be considered as a prototype dimension
in organizing our concern space.  They are not a dominant
decomposition, but they serve as a featured orientation for
organizing the presentation of information and structuring
prototypical workflows.  Additionally, they will not be the
only dimension of organization within the system, and paths
based on other featured orientations will be provided.

Once we understand better how to categorize and present
concerns for a particular type of component, we expect to
open up the system to various types of extension.  These
include the addition of new implementation classes for use
in composing the original application model, the addition of
new elements to the original application model, and the
addition of new classes to those for which composition is
supported.  The latter we expect will involve the
introduction of new prototypes for new categories of
application-level components.  In keeping with the principle
that a system of categories should represent contrasting
elements, we need to understand more about what truly
distinguishes one type of component from another for the
purposes of developers and to be sure that the appropriate
concerns and relationships are reflected clearly in our
concern-space models.

7. Summary and Conclusions

Multidimensional separation of concerns and its
applications fundamentally involve problems of
categorization.  The prototype theory of categorization
contains many elements that are descriptive of  phenomena
related to MDSOC.  These elements include graded
categories, prototypical effects, basic levels, part-whole
structure, and others.  The prototype theory seems to fit
MDSOC better than the classical theory of hierarchical
categories.  Moreover, elements of prototype theory imply
that composition should be a more natural technique than
inheritance.

Although prototype theory characterizes MDSOC well in
several respects, there are issues related to categorization
that are not yet resolved.  These include the prevalence of
approximate categories (where approximation has several
sources), interaction at multiple levels, applicability of
multiple dimensions, and the decoupling of interaction from
other meaningful bases for categorization.

Many aspects in the design of a system to support the
composition of software components, such as caches, are
unconstrained.  The adoption of various notions of
prototype are helpful in restricting the design space.  We
have used a prototypical application model of a cache to
organize the system information model and workflow.
With this we expect to gain experience with the use of
prototypes and ultimately to learn how to systematically
expand the scope, flexibility, and utility of component
composition systems.

8. ACKNOWLEDGMENTS

We are grateful to Doug McDavid for introducing us to
work in the area of cognitive theories of categorization.

9. REFERENCES

[1] IBM.  Hyper/J.  http://www.research.ibm.com/
hyperspace/HyperJ/HyperJ.htm

[2] Iyengar, Arun. Design and Performance of a General Purpose
Software Cache; in Proceedings of the 18th IEEE International
Performance, Computing, and Communications Conference
(IPCCC’99), Phoenix/ Scottsdale, Arizona, Feb. 1999.

[3] Lakoff, George.  Women, Fire, and Dangerous Things--What
Categories Reveal about the Mind.  The University of Chicago
Press, Chicago, 614 pp., 1987.

[4] Sutton Jr., S. M. and Rouvellou, I.  Concerns in the Design of
a Software Cache.  Workshop on Advanced Separation of
Concerns in Object-Oriented Systems. Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Minneapolis, Minnesota, Nov. 2000.

[5] Sutton Jr., S. M. and Rouvellou, I.  Issues in the Design and
Implementation of a Concern-Space Modeling Schema.
Workshop on Advanced Separation of Concerns in Software
Engineering. 23rd International Conference on Software
Engineering (ICSE), Toronto, Canada. May 2001.

[6] Tarr, P., Ossher, H., Harrison, W. and Sutton Jr., S. M.  N
Degrees of Separation:  Multidimensional Separation of
Concerns.  In Proceedings of the 21st International Conference on
Software Engineering. ACM, New York, 1999, pp. 107--119.


