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Abstract

Recently, sample complexity bounds have been derived for problems involving linear func-

tions such as neural networks and support vector machines. In this paper, we extend some

theoretical results in this area by providing convergence analysis for regularized linear functions

with an emphasis on classi�cation problems. The class of methods we study in this paper gen-

eralize support vector machines and are conceptually very simple. To analyze these methods

within the traditional PAC learning framework, we derive dimensional independent covering

number bounds for linear systems under certain regularization conditions, and obtain relevant

generalization bounds. We also present an analysis for these methods from the asymptotic sta-

tistical point of view. We show that this technique provides better description for large sample

behaviors of these algorithms. Furthermore, we shall investigate numerical aspects of the pro-

posed methods, and establish their relationship with ill-posed problems studied in numerical

mathematics.

1 Introduction

In this paper, we are interested in the generalization performance of linear classi�ers obtained

from certain algorithms. From computational learning theory point of view, such performance

measurements, or sample complexity bounds, can be described by a quantity called covering number

[26, 37, 35], which measures the size of a parametric function family. For two-class classi�cation

problem, the covering number can be bounded by a combinatorial quantity called VC-dimension

[37, 28]. Following this work, researchers have found other combinatorial quantities (dimensions)

useful for bounding the covering numbers. Consequently, the concept of VC-dimension has been

generalized to deal with more general problems, for example in [26, 35]. Many of the more recent

results have been summarized in [5] and [34].

Recently, Vapnik introduced the concept of support vector machine [36] which has been suc-

cessful applied to many real problems. This method achieves good generalization by restricting the

2-norm of the weights of a separating hyperplane. A similar technique has been investigated by
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Bartlett [3], where the author studied the performance of neural networks when the 1-norm of the

weights is bounded. The same idea has also been applied in [29] to explain the e�ectiveness of the

boosting algorithm.

In Section 4, we will see that support vector machines for training linear classi�ers are special

cases of the following general form of regularization method which has been widely studied for

regression problems both in statistics and in numerical mathematics:

inf
w
Ex;yL(w; x; y) = inf

w
Ex;yf(w

Txy) + �g(w); (1)

where Ex;y is the expectation over a distribution of (x; y), and y 2 f�1; 1g is the binary label of

data vector x. To apply this formulation for the purpose of training linear classi�ers, we can choose

f as a decreasing function, such that f(�) � 0, and choose g(w) � 0 as a function that penalizes

large w (limw!1 g(w) ! 1). � is an appropriately chosen positive parameter to balance the two

terms.

In this paper, we study some theoretical aspects of using (1) to obtain a linear classi�er w with

the following decision rule to predict the label y of an unlabeled data x:

y =

(
1 if wTx > 0;

�1 if wTx � 0:

To analyze this system, we shall �rst extend the covering number bounds of 1-norm regularized

neural networks in [3], and emphasize the importance of dimensional independence. Generalization

performance of (1) in the PAC learning framework is derived accordingly. This analysis shows that

the new formulation (1) has similar theoretical advantages as support vector machines while concep-

tually is simpler (in the sense that the new formulation is in the form of traditional regularization

methods in statistics and numerical mathematics people are familiar with). One disadvantage of

PAC style analysis is that the derived small sample bounds are often not accurate for real prob-

lems. If f and g are smooth functions in (1), we show that exact asymptotic formulae exist. These

asymptotic results provide better large sample descriptions for learning algorithms. Furthermore,

since the form of (1) comes from regularization methods used in numerical mathematics for solving

ill-posed problems, it is natural to study related numerical issues. We will demonstrate the rela-

tionship of the new method with support vector machines, and why a non-zero � is important for

stability of the system under observation noise. Note that although such issues are very important

in practice, they are often ignored under the standard PAC learning framework.

In a separate report [38], we study eÆcient numerical algorithms for solving (1) and its gener-

alizations. We demonstrate that the newly derived methods compare favorably with the quadratic

programming formulation of support vector machines. The new methods based on (1) and its

generalizations are more exible and often more eÆcient to solve numerically. Conceptually, we

may also regard (1) as a model of data distribution, and derive interesting new learning algorithms

accordingly.

The paper is organized as follows. Section 2 studies (1) from the PAC learning point of view. In
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Section 2.1, we briey review the concept of covering numbers as well as the main results related to

analyzing the performance of learning algorithms. In Section 2.2, we introduce the regularization

idea. Our main goal is to construct regularization conditions so that dimension independent bounds

on covering numbers can be obtained. Section 2.3 extends results from the previous section to

nonlinear compositions of linear functions. We will present some generalization error bounds for

(1). In Section 3, we derive an asymptotic formula for the expected generalization performance of a

learning algorithm, which will then be used to analyze the proposed formulation. In Section 4, we

study some numerical properties of the new formulation and compare it to the problem of solving

ill-posed systems. Section 5 summarizes results obtained in this paper.

2 PAC style generalization bounds

2.1 Covering numbers

We formulate the learning problem as to �nd a parameter from random observations to minimize

the expected loss (risk): given a loss function L(�; x) and n observations Xn
1 = fx1; : : : ; xng

independently drawn from a �xed but unknown distribution D, we want to �nd � that minimizes

the expected loss over x:

R(�) = Ex L(�; x) =

Z
L(�; x) dP (x): (2)

Without any assumption of the underlying distribution x, the most natural method for solving

(2) using a limited number of observations is by the empirical risk minimization (ERM) method

(cf. [35, 36]). We simply choose a parameter � that minimizes the observed risk:

R(�;Xn

1 ) = EXn

1
L(�; x) =

1

n

nX
i=1

L(�; xi); (3)

where we use EXn

1
to denote the empirical expectation over the observed data.

We denote the parameter obtained in this way as �erm(X
n
1 ). The convergence behavior of this

method can be analyzed by using the VC theory under the PAC framework, which relies on the

uniform convergence of the empirical risk (the uniform law of large numbers): sup� jR(�;Xn
1 ) �

R(�)j. Such a bound can be obtained from quantities that measure the size of a Glivenko-Cantelli

class. For a �nite number of indices, the family size can be measured simply by its cardinality. For

general function families, a well known quantity to measure the degree of uniform convergence is

the covering number which can be dated back to Kolmogrov [21, 22]. The idea is to discretize (the

discretization process can depend on the data Xn
1 ) the parameter space into N values �1; : : : ; �N

so that each L(�; �) can be approximated by L(�i; �) for some i. We shall only describe a simpli�ed

version relevant for our purposes.

De�nition 2.1 Let B be a metric space with metric �. Given a norm p, observations Xn
1 =

[x1; : : : ; xn], and vectors f(�;Xn
1 ) = [f(�; x1); : : : ; f(�; xn)] 2 Bn

parameterized by �, the covering
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number in p-norm, denoted as Np(f; �;X
n
1 ), is the minimum number of a collection of vectors

v1; : : : ; vm 2 Bn
such that 8�, 9vi: k�(f(�;Xn

1 ); vi)kp � n1=p�. We also denote Np(f; �; n) =

maxXn

1
Np(f; �;X

n
1 ).

Note that from the de�nition and the Jensen's inequality, we have Np � Nq for p � q. We will

always assume the metric on R to be jx1 � x2j if not explicitly speci�ed otherwise. The following

theorem is due to Pollard [26]:

Theorem 2.1 ([26]) 8n, � > 0 and distribution D,

P [sup
�

jR(�;Xn

1 )�R(�)j > �] � 8E[N1(L; �=8; X
n

1 )] exp(
�n�2
128M2

);

where M = sup�;x L(�; x) � inf�;x L(�; x), and Xn
1 = fx1; : : : ; xng are independently drawn from

D.

The constants in the above theorem can be improved for certain problems: see [6, 13, 35, 36] for

related results. However, they yield very similar bounds. The result most relevant for this paper

is a lemma in [3] where the 1-norm covering number is replaced by the 1-norm covering number.

The latter can be bounded by a scale-sensitive combinatorial dimension [1], which can be bounded

from the 1-norm covering number if this covering number does not depend on n. These results can

replace Theorem 2.1 to yield better estimates under certain circumstances.

Since Bartlett's lemma in [3] is only for classi�cation problems, we shall extends it to general

problems so that it is comparable to Theorem 2.1. In the following theorem, we replace the \margin"

concept for classi�cation problems by a notion of separation for general problems. We also avoid

introducing the concept of \fat-shattering" dimension which leads to some complicated technical

manipulations in [3]. The important di�erences between the following theorem and Theorem 2.1

are: �rstly, with the existence of a -separating function, we are able to use di�erent accuracies

 and � respectively in the covering number estimate and the Cherno� bound; and secondly, the

covering number itself is not that of the overall loss function.

Theorem 2.2 Let f1 and f2 be two functions: Rn ! [0; 1] such that jy1�y2j �  implies f1(y1) �
f3(y2) � f2(y1) where f3 : R

n ! [0; 1] is a reference separating function, then

P [sup
�

[Exf1(L(�; x)) �EXn

1
f2(L(�; x))] > �] � 4E[N1(L; ;X

n

1 )] exp(
�n�2
32

);

Proof. We follow the standard techniques (cf. [26, 37]).

Step 1 (symmetrization by a replicate sample). For all n�2 � 2, and consider i.i.d. random

sample Y n
1 , independent of X

n
1 ,

P [sup
�

[Exf1(L(�; x)) �EY n

1
f2(L(�; y))] > �]

�2P [sup
�

EXn

1
f1(L(�; x)) �EY n

1
f2(L(�; y)) > �=2]:
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To see this, consider a function �� such that ��(Y n
1 ) is a parameter that satis�es Exf1(L(�

�; x))�
EY n

1
f2(L(�

�; y)) > � if such a parameter exists; and let ��(Y n
1 ) be an arbitrary parameter if no such

parameter exists. Note that for any Y n
1 , by the Chebyshev's inequality, the conditional probability

P [Exf1(L(�
�; x)) �EXn

1
f1(L(�

�; y)) � �=2jY n

1 ]

�1� 1

n�2=4
Exf1(L(�

�; x))(1 �Exf1(L(�
�; x))) � 1=2:

We thus have

1

2
P [sup

�

[Exf1(L(�; x)) �EY n

1
f2(L(�; y))] > �]

=
1

2
P [Exf1(L(�

�; x)) �EY n

1
f2(L(�

�; y)) > �]

�P [Exf1(L(�
�; x))�EY n

1
f2(L(�

�; y)) > �;Exf1(L(�
�; x))�EXn

1
f1(L(�

�; y)) � �=2]

�P [EXn

1
f1(L(�

�; x))�EY n

1
f2(L(�

�; y)) > �=2]

�P [sup
�

EXn

1
f1(L(�; x)) �EY n

1
f2(L(�; y)) > �=2]:

Step 2 (symmetrization by random signs). Consider i.i.d. sign variables �1; : : : ; �n, independent

of Xn
1 and Y n

1 , with P (�i = �1) = P (�i = 1) = 1=2. De�ne

g�(�; x) = (f1(L(�; x)) � f2(L(�; x)))=2 + �(f1(L(�; x)) + f2(L(�; x)))=2;

and

h�(�; y) = �(f1(L(�; y)) � f2(L(�; y)))=2 + �(f1(L(�; y)) + f2(L(�; y)))=2:

It follows that the distribution of

sup
�

nX
i=1

f1(L(�; xi))� f2(L(�; yi))

is the same as that of

sup
�

nX
i=1

g�i(�; xi)� h�i(�; yi):
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Therefore

P [sup
�

EXn

1
f1(L(�; x)) �EY n

1
f2(L(�; y)) > �=2]

=P [sup
�

1

n

nX
i=1

g�i(�; xi)� h�i(�; yi) > �=2]

�2P [sup
�

1

n

nX
i=1

g�i(�; xi) > �=4]:

Step 3 (derandomizing data). To estimate P [sup�
1
n

P
n

i=1 g�i(�; xi) > �=4], we �x Xn
1 and

estimate the conditional probability

P [sup
�

1

n

nX
i=1

g�i(�; xi) > �=4jXn

1 ]:

Let f(z1;j ; : : : zn;j) : j = 1; : : : ;mg be an in�nity-norm -covering of L(�;Xn
1 ), where m =

N1(L; ;Xn
1 ), then by de�nition, 8�, 9j such that jzi;j�L(�; xi)j <  for all i. Note that g1(�; xi) =

f1(L(�; xi)) � f3(zi;j) and g�1(�; xi) = �f2(L(�; xi)) � �f3(zi;j), therefore g�i(�; xi) � �if3(zi;j).

We thus obtain

P [sup
�

1

n

nX
i=1

g�i(�; xi) > �=4jXn

1 ]

�P [sup
j

1

n

nX
i=1

�if3(zi;j) > �=4jXn

1 ]

�N1(L; ;X
n

1 ) sup
j

P [
1

n

nX
i=1

�if3(zi;j) > �=4jXn

1 ]

�N1(L; ;X
n

1 )e
�n�2=32:

The last inequality follows from the Hoe�ding's inequality [16]. 2

We say that f1 and f2 has a  separator if there exists f3 such that jy1 � y2j �  implies

f1(y1) � f3(y2) � f2(y1). Note that if we de�ne f
(y) = supjz�yj< f1(z), then f1 and f2 has a 

separator f .

The above theorem gives the following PAC style generalization error bound: 8; � > 0, with

probability of at least 1� �,

Exf1(L(�; x)) � EXn

1
f2(L(�; x)) +

r
32

n
(ln 4N1(L; ; n) + ln

1

�
):

If we consider a sequence of functions f


2 parameterized by , each having a  separator, then we

immediately notice that in the above bound,  has to be data independent. However, by using an

idea described in [30], it is not diÆcult to give a uniform bound so that  can be chosen according
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to data:

Corollary 2.1 Let 0 � f1 � f


2 � 1 be two families of functions parameterized by  2 [0; 1], such

that f1 and f


2 has a  separator. Assume that f
1

2 (y) � f
2

2 (y) if 1 � 2. Let 1 > 2 > � � � be a

decreasing sequence of parameters, and pi be a sequence of positive numbers such that
P

i
pi = 1,

then for all � > 0, with probability of at least 1� � over data:

Exf1(L(�; x)) � EXn

1
f


2 (L(�; x)) +

r
32

n
(ln 4N1(L; i;Xn

1 ) + ln
1

pi�
)

for all  2 [0; 1], where i is the smallest index such that i < .

Proof. The result follows from Theorem 2.2 and basic probability arguments presented in [30].

8i > 0 (let 0 = 1), with probability at most pi�, we have

Exf1(L(�; x)) > EXn

1
f
i�1

2 (L(�; x)) +

r
32

n
(ln 4N1(L; i; Xn

1 ) + ln
1

pi�
):

Summing up over i, with probability at most �,

Exf1(L(�; x)) > EXn

1
f
i�1

2 (L(�; x)) +

r
32

n
(ln 4N1(L; i; Xn

1 ) + ln
1

pi�
):

for at least one i, which implies the corollary. 2

If close to perfect generalization can be achieved, i.e. EXn

1
f


2 (L(�; x)) � 0, we can obtain better

bounds by using a re�ned version of Cherno� bound where �2n�2 is replaced by �n�2=2(Ef + �)

for over estimation and �n�2=Ef for under estimation. In the extreme case that some choice

of � achieves perfect generalization: Exf


2 (L(�; x)) = 0, and assume that our choices of �(Xn
1 )

always satisfy the condition EXn

1
f


2 (L(�; x)) = 0, then it is not hard to see that a generalization

performance of O( 1
n
logN1) instead of O(

q
1
n
logN1) can be achieved.

2.2 Covering number bounds for linear systems

Theorems in Section 2.1 demonstrate the important roles of covering numbers for analyzing the

generalization performance of a learning algorithm. In this section, we shall derive a few new

bounds on covering numbers for the following form of real valued loss functions:

L(w; x) = xTw =

dX
i=1

xiwi: (4)

As we shall see later, these bounds are relevant to the convergence properties of (1). For simplicity,

we shall skip covering number results for vector valued functions since they are less relevant to the

regularization method (1). A brief discussion on related issues will be given in Section 2.3 when

we study nonlinear compositions of linear systems. Note that in order to apply Theorem 2.1, since

N1 � N2, therefore it is suÆcient to estimate N2(L; �; n) for � > 0. It is clear that N2(L; �; n) is
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not �nite if no restrictions on x and w are imposed. Therefore in the following, we will assume

that each kxikp is bounded, and study conditions of kwkq so that logN (f; �; n) is independent or

weakly dependent of d.

We start our analysis with a lemma that is attributed to Maurey, also see [2, 18].

Lemma 2.1 (Maurey) In a Hilbert space, let f =
P

d

i=1 wigi, where each kgik � b, wi � 0 and

� =
P

i
wi � 1, then for every n � 1, there exist non-negative integers k1; : : : ; kd � 0, such thatP

d

i=1 ki � n and

kf � 1

n

dX
i=1

kigik2 �
�b2 � kfk2

n
:

Our �rst result generalizes a theorem of Bartlett [3]. The original results is with p = 1 and

q = 1, and the related technique has also appeared in [23, 29].

Theorem 2.3 If kxikp � b and kwkq � a, where 1=p+ 1=q = 1 and 2 � p � 1, then

log2N2(L; �; n) � da
2b2

�2
e log2(2d+ 1):

Proof. Consider matrix X = [x1; : : : ; xn]
T . Denote the columns of X as y1; : : : ; yd. Let

gi =
n1=pab

kyikp
yi; w0i =

kyikp
n1=pab

wi:

By H�older's inequality, it is easy to check that

X
i

jw0ij =
�����
X
i

kyikp
n1=pab

wi

�����
� 1

n1=pab
(
X
i

kyikpp)1=p(
X
i

jwijq)1=q

� 1

n1=pab
(nbp)1=pa = 1:

Since function xp=2 is convex, thus by the Jensen's inequality, we obtain n�1=2kyik2 � n�1=pkyikp.
This implies that kgik2 � n1=2ab. Therefore by Lemma 2.1, if we let k � (ab=�)2, then 8z =P

i
wiyi,

we can �nd integers k1; : : : ; kd such that
P

i
jkij � k and

kz � 1

k

X
i

kigik22 �
na2b2

k
� n�2:

This means that the covering number N2(L; �; n) is no larger than the number of integer solutions

of
P

i
jkij � k, which is less than or equal to (2d + 1)k. 2
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The above bound on the covering number depends logarithmically on d, which is already quite

weak (as compared to linear dependence on d in the standard situation). However, the bound in

Theorem 2.3 is not tight for p <1. For example, the following theorem improves the above bounds

for p = 2. Our technique used in the proof relies on the SVD decomposition [10] for matrices, and

improves a similar result in [30] (which relies on the \fat-shattering" dimension) by a logarithmic

factor of n.

Theorem 2.4 If kxik2 � b and kwk2 � a, then

log2N2(L; �; n) � d2a
2b2

�2
e log2(4a2b2=�2 + 1):

Proof. Consider the matrix X in the proof of Theorem 2.3. Assume that the SVD decomposition

of X is X = USV . Let q = min(n; d) and the non-zero diagonal elements of S are �1; : : : ; �q.

Therefore after an orthogonal rotation which does not change the L2 norm, the range R of Xw can

be written as
P

i
(zi=�i)

2 � a2. We need to �nd an
p
n�-L2 cover for R. Note that the Frobenius

norm kXk2
F
� nb2, which implies that

P
i
�2
i
� nb2. Therefore there are at most p � 2a2b2=�2 of

those �i which can be larger than or equal to
p

n

2
�=a. Assume that they are �1; : : : ; �p, then by the

Schwartz inequality,
P

p

i=1 jzij � (
P

i
(zi=�i)

2)1=2(
P

i
(�i)

2)1=2 � p
nab. Thus by Theorem 2.3, there

exists an �=
p
2-covering of R0 = f[z1; : : : ; zp] :

P
p

i=1(zi=�i)
2 � a2g with exp[d2a2b2

�2
e log2(2p + 1)]

vectors. Since (
P

n

i=p+1 z
2
i
)1=2 �

p
n

2
�, therefore, these vectors in the �=

p
2-covering of R0 padded

with zeros give an � covering of R. 2

The next theorem shows that if 1=p + 1=q > 1, then the 2-norm covering number is also

independent of dimension.

Theorem 2.5 If kxikp � b and kwkq � a, where 1 � q � 2 and Æ = 1=p+ 1=q � 1 > 0, then

log2N2(L; �; n) � d4a
2b2

�2
e log2(2(2ab=�)1=Æ + 1)

Proof. Let p0 = q=(q � 1), then as in the proof of Theorem 2.3, we obtain

X
i

jw
0
i

�i
jq � 1;

X
i

j�ijp � 1;

where w0
i
= 1

ab
kyikpn�1=pwi and �i = kyikpn�1=p=b.

Now we (re-order and) partition f�ig into two parts such that j�u+1j; : : : ; j�dj < �
1=p
1 (the value

of �1 is to be determined later) where u � 1=�1. Since

dX
i=u+1

�
p0

i
� �

Æp0

1

dX
i=u+1

�
p

i
� �

Æp0

1 ;
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therefore
dX

i=u+1

yiwi


2

�
dX

i=u+1

kgik2j�i �
w0
i

�i
j � n1=2ab(

dX
i=u+1

j�ijp
0

)1=p
0

(

dX
i=u+1

jw
0
i

�i
jq)1=q � n1=2ab �Æ1:

By Theorem 2.3, 8�2, there exists an �2-covering of
P

u

i=1wiyi with exp[da2b2
�2
2

e log2(2u+1)] vectors.

These vectors also give an (�Æ1ab + �2)-cover for
P

d

i=1 wiyi. Now, by setting �1 = (�=2ab)1=Æ and

�2 = �=2, we obtain the theorem. 2

One consequence of this theorem is a potentially re�ned explanation for the boosting algorithm.

In [29], the boosting algorithm has been analyzed by using a technique related to results in [3] which

essentially rely on Theorem 2.3 with p = 1. Unfortunately, the bound contains a logarithmic

dependency on d (in the general case) which does not seems to fully explain the fact that the

performance of the boosting algorithm keeps improving as d increases. However, this seemingly

mysterious behavior may be better understood from Theorem 2.5 under the assumption that the

data is more restricted than simply being 1-norm bounded. For example, when the contribution

of the wrong predictions is bounded by a constant for all data, then we can regard its p-th norm

bounded for some p <1. In this case, Theorem 2.5 implies dimensional independent generalization

which is consistent with experiments. In general, this interpretation can be useful for 1-norm

bounded data with certain sparsity properties.

Another way to remove the dimensional dependency of covering numbers is to introduce a

damping (i.e. to treat dimensions unequally), as demonstrated in the following theorem. The basic

idea behind this theorem is to introduce some \compactness" which stabilizes numerical estimation

(also see related discussions in Section 4). This technique shrinks the space so that the e�ective

dimension is reduced. One can easily generalize this theorem by using linear operators instead of

sequences of numbers aj and bj:

Theorem 2.6 If
P

j
jxi;j=bj jp � 1 and

P
j
jwj=aj jq � 1, where 1=p + 1=q = 1, p 2 [2;1], and

jajbjj � c

2
f(j)�s for some c; s > 0, where f � 1 is a monotone increasing function, then

log2N2(L; �; n) � dc
2

�2
e log2[2f�1((c=�)1=s) + 1]:

Proof. Similar to the proof of the previous theorem. Just note that when j � f�1((c=�)1=s) = u,

jajbjj � �=2. Therefore

j
X
j�u

wjxj j �
�

2

X
j�u

jwj=aj j � jxj=bj j � �=2:

2

If we want to apply Theorem 2.2, then it is necessary to obtain bounds for in�nity-norm covering

numbers. The following theorem give such bounds by using a result from online learning.
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Theorem 2.7 If kxikp � b and kwkq � a, where 2 � p <1 and 1=p+ 1=q = 1, then 8� > 0,

log2N1(L; �; n) � 36(p � 1)
a2b2

�2
log2[2d4ab=� + 2en+ 1]:

Proof. If � > ab, then since jxT
i
wj � ab for all i, we can choose 0 as a cover and the theorem follows

trivially. In the following we assume that � � ab.

We divide the interval [�ab��=2; ab+�=2] withm = d4ab=�+2e intervals, each of size no larger

than �=2. Let �ab� �=2 = �0 < �1 < � � � < �m = ab+ �=2 be the boundaries of the intervals so that

�i� �i�1 � �=2 for all i. For a sample Xn
1 = fx1; : : : ; xng, consider the sets S1 = f(xi;��j=a) : i =

1; : : : ; n; j = 0; : : : ;m� 1g and S2 = f(�xi; �j=a) : i = 1; : : : ; n; j = 1; : : : ;mg.
8kwkq � a, consider the set of values of w: xT

i
w � �j1(i;w) and �xTi w + �j2(i;w), where j1(i; w)

is the maximum index of �j such that xT
i
w � �j1(i;w) � �=2; and j2(i; w) is the minimum index of

�j such that xT
i
w � �j2(i;w) � ��=2. This implies that 8(y; z) such that if 8i: xT

i
y � z�j1(i;w) > 0

and �xT
i
y + z�j2(i;w) > 0, then z > 0 and 8i : xT

i
y=z 2 (�j1(i;w); �j2(i;w)). This implies that

jxT
i
y=z � xT

i
wj < � for all i.

We apply a mistake bound result for online algorithms from [12] which implies that 8kwkq � a,

let

M = 36(p� 1)
a2b2

�2
� (p� 1)

(�=2)2
(kwkqq + aq)2=q sup

i

(kxikpp + (b+ �=2a)p)2=p;

then there exists non-negative integer sequences �i and �i, such that
P

n

i=1 �i + �i �M and if we

let

(y; az) = fp(
X
i

�i(xi;��j1(i;w)=a) +
X
i

�i(�xi; �j2(i;w)=a));

where fp(z) = p � sign(z)jzjp�1, then xT
i
y � z�j1(i;w) > 0 and �xT

i
y + z�j2(i;w) > 0 for all i.

It follows from the above discussion that the in�nity-norm covering number N1(L; �; n), is no

more than the number of non-negative integer solutions of

X
i;j

ni;j +mi;j �M;

where (i; j) go through the index of S1 (and S2). Since the number of solutions is no more than

(jS1j+ jS2j+ 1)M , thus

log2N1(L; �; n) � 36(p � 1)
a2b2

�2
log2[2d4ab=� + 2en+ 1]:

2

Note that in Theorem 2.7, we have made no attempt to optimize the constants. Since �0 =

�ab � �=2 and �m = ab + �=2 are quite arti�cially introduced, and are only for the purpose of

11



consistent indexing, thus improvements can be obtained trivially by simply ignoring them. Also

note that N2 � N1, therefore Theorem 2.7 implies dimensional independent 2-norm covering

number bounds for 2 � p < 1, which gives better results than Theorem 2.3 in the sense of

dimensional dependency. In the case of p = 1, we show that an entropy condition can be used

to obtain dimensional independent covering number bounds. This entropy condition is related to

the multiplicative update algorithms widely studied for online learning algorithms. We shall �rst

introduce the following de�nition:

De�nition 2.2 Let � = [�i] be a vector with positive entries such that k�k1 = 1 (in this case, we

call � a distribution vector). Let x = [xi] 6= 0 be a vector of the same length, then we de�ne the

weighted relative entropy of x with respect to � as:

entro�(x) =
X
i

jxij ln
jxij

�ikxk1
:

It is a well-known fact that relative entropy as de�ned above is always non-negative, and entro�(x) =

0 only when jxj = kxk1 ��. Before the main theorem, we need a Lemma that re�nes and generalizes

the discussion in Section 5 of [12] (their result is not directly applicable). Also see [8, 9, 19] and

references therein for related techniques. In the following lemma, xj;i indicates the i-th component

of vector xj.

Lemma 2.2 Let � be a distribution vector and w be a vector with non-negative entries such that

kwk1 �W . 8Æ 2 (0;minj w
Txj], let

m(Æ) =
2 supi kxik21W � entro�(w)

Æ2
:

Then there exists an integer sequence j1; : : : ; jk where k � m(Æ), and a vector ŵ de�ned as ŵi =

�i exp(�
P

k

`=1 xj`;i), where � = Æ=W supj kxjk21, so that ŵTxj > 0 for all j.

Proof. Without loss of generality, we assume that kwk1 = 1. Let z be a vector, consider

M(z) = ln

nX
i=1

�ie
zi � wT z +

nX
i=1

wi ln
wi

�i
;

then it is easy to show that M(z) � 0 for all z.

Assume now that the Theorem is not true, then there exists a sequence of integers j1; : : : ; jk

where k > m(Æ) such that if we de�ne a sequence of vectors z` as z` = z`�1 + �xj` with z0 = 0,

then
P

i
�i exp(z`�1;i)xj`;i � 0.

Note that for all pairs of vectors v;�v:

d

dt
ln
X
i

�ie
vi+�vit =

P
i
�ie

vi+�vit�viP
i
�ievi+�vit

12



and

d2

dt2
ln
X
i

�ie
vi+�vit �

P
i
�ie

vi+�vit�v2
iP

i
�ievi+�vit

:

Therefore from the Taylor expansion, we know that there exists t 2 [0; 1] such that

ln
X
i

�ie
z`;i � ln

X
i

�ie
z`�1;i +

P
i
�ie

z`�1;i�xj`;iP
i
�ie

z`�1;i

+
�2

2

P
i
�ie

z`�1;i+�xj`;itx2
j`;iP

i
�ie

z`�1;i+�xj`;it

� ln
X
i

�ie
z`�1;i +

�2

2

P
i
�ie

z`�1;i+�xj`;itx2
j`;iP

i
�ie

z`�1;i+�xj`;it

� ln
X
i

�ie
z`�1;i +

�2

2
kxj`k21:

Note that we have used the fact that
P

i
�i exp(z`�1;i)xj`;i � 0. We obtain

M(z`)�M(z`�1) = ln

P
i
�ie

z`;iP
i
�ie

z`�1;i

� wT � �xj`

��2

2
kxj`k21 � �Æ:

Summing up over `:

M(zk) <M(z0) +m(Æ)(
�2

2
sup
j

kxjk21 � �Æ)

=entro�(w) +m(Æ)(
�2

2
sup
j

kxjk21 � �Æ) � 0;

which is a contradiction. 2

Theorem 2.8 Given a distribution vector �, If kxik1 � b and kwk1 � a and entro�(w) � c, where

we assume that w has non-negative entries, then 8� > 0,

log2N1(L; �; n) �
36b2(a2 + ac)

�2
log2[2d4ab=� + 2en+ 1]:

Proof. The proof follows the same steps of Theorem 2.7. We let �0 = [�; 1]=2 and w0 = [w; a].

Thus kw0k1 � 2a, and entro�0(w
0) � entro�(w) + a ln 2 < a + c. Similarly, the expansion x0

i
of xi

(by adding an entry �=a) has norm kx0
i
k1 � 1:5b (we assume that �=a � b). We shall apply the

mistake bound from Lemma 2.2, where we set Æ = �=2 and W = 2a, then de�ne M as

M =
36(a + c)ab2

�2
� 2

Æ2
sup
i

kx0ik21W � entro�0(w0):

13



The rest of the proof follows from essentially the same arguments of Theorem 2.7's proof. 2

Corollary 2.2 Given a distribution vector �, If kxik1 � b and kwk1 � a and entro�(w) � c, then

8� > 0,

log2N1(L; �; n) � 1 +
144b2(2a2 + ac)

�2
log2[2d4ab=� + 2en+ 1]:

Proof. Let u = min(w; 0) and v = min(�w; 0), then w = u � v and kuk1; kvk1 � kwk1. Since for
any L = L1 � L2, we have N1(L; �; n) � N1(L1; �=2; n) +N1(L2; �=2; n), therefore we only need

to show that entro�(u) � entro�(w) + kwk1. To prove this, we shall assume that kwk1 = 1 without

loss of generality, and u; v 6= 0. Since kuk1 + kvk1 = 1, thus

kuk1 ln
1

kuk1
+ kvk1 ln

1

kvk1
� ln 2 � ln 2 +

X
i

vi ln
vi

kvk1�i
:

The above inequality can be rewritten as

X
i

ui ln
ui

�ikuk1
� ln 2 +

X
i

ui ln
ui

�i
+
X
i

vi ln
vi

�i
:

That is entro�(u) � entro�(w) + ln 2. 2

Note that we don't require the dimension to be �nite. However, if the dimension d is �nite, and

we let �i = 1=d, then it is easy to check that 8w; entro�(w) � kwk1 lnd. Therefore by Corollary 2.2,
we obtain the following result which gives a better bound than a similar result in [3] by a logarithmic

factor of n.

Corollary 2.3 If kxik1 � b and kwk1 � a, then 8� > 0,

log2N1(L; �; n) � 1 +
144a2b2(2 + lnd)

�2
log2[2d4ab=� + 2en+ 1]:

We shall now discuss the relationship among the covering number bounds obtained in this

section. Theorem 2.3 uses a reduction technique to generalize a result in [3] (with p = 1 and

q = 1) which employs the Maurey's Lemma. However, it is very diÆcult to remove the inherent

logarithmic dependence on dimension through this method. As a comparison, Theorem 2.7 (note

that N2 � N1) employs online-learning mistake bound results to remove the log d dependency

by introducing a log n dependency. This trade-o� of log d and log n is very natural from the

computational point of view since Maurey's Lemma achieves an approximation by selecting columns

(relevant features) of the data while an online algorithm achieves an approximation by selecting

rows (related to support vectors) of the data. It follows that if d � n, than Theorem 2.7 gives a

better result, and if n � d, Theorem 2.3 gives better result. Note that in the PAC style bounds,

the logn dependency on the sample size usually does not cause signi�cant problem. However,

it is still of interests to obtain covering number bounds that are independent of both n and d.

14



Theorem 2.4 gives such an example. Although, we speculate that the same claim could be true

for all 1=p + 1=q = 1 and 2 � p < 1, we are unable to prove (or disprove) this at the moment.

However, in Theorem 2.5 and Theorem 2.6, we are able to obtain such results either under the

assumption that 1=p+ 1=q > 1, or by a damping technique.

In the proofs of Theorem 2.4 and Theorem 2.5, the e�ective dimension of the problem are

reduced by a compaci�cation of part of the dimensions. This idea of compaci�cation is very im-

portant in practical algorithms and is related to numerical stability of formulation (1) discussed

in Section 4. Theorem 2.6 achieves such compaci�cation directly by shrinking the non-important

dimensions. Compactness also plays an important role in the numerical properties of solving (1)

which we will analyze in Section 4. Theorem 2.8 is closely related to Theorem 2.6 in the sense

of compaci�cation. However, it employs another regularization condition. If we regard �i as a

prior measure and w as a posterior measure, then the entropy condition in Theorem 2.8 clearly

corresponds to the maximum entropy principal in density estimation. Therefore our covering num-

ber result justi�es the maximum entropy method from PAC learning point of view. However, we

shall mention that in order to obtain a consistency result for the maximum entropy method in the

sense of weak convergence in distribution, the PAC style analysis is insuÆcient and the sequentially

weak* compactness [27] of the regularized parameter set becomes important.

As a comparison of Theorem 2.7 and Theorem 2.8, note that as p ! 1, the covering number

bound diverges in Theorem 2.7. This is true when we try to regularize the parameter w around the

origin, as pointed out in [12]. It is possible to construct a regularization condition around a non-

zero vector so that the bound in Theorem 2.7 becomes its limit as p!1. Because of Theorem 2.8

and its relation to the well-established maximum entropy principle, it is reasonable to use the

entropy condition as in Theorem 2.8 (instead of 1-norm) as the regularization condition for in�nity-

norm bounded data. The Winnow online multiplicative update algorithm [24] and its continuous

version of EG algorithm [19], as well as the classical MART (multiplicative algebraic reconstruction

technique) algorithm [11] implicitly include such an entropy condition. In [38], we propose some

other numerical algorithms for solving a formulation of (1) with entropy regularization condition.

Recently, it was also shown in [20] that the boosting algorithm has a tendency to minimize entropy

, although the analysis given in [29] only used the fact that the algorithm tries to maximize margin

with �xed 1-norm. In addition, from the discussion after Theorem 2.3, sparse structures presented

in the data were often overlooked in the old theoretical analysis when the data is in�nite-norm

bounded, and either the entropy or the 1-norm regularization condition is used.

We have shown in this section that covering number bounds can be derived from online mistake

bounds. This fact suggests that after running a small mistake bound online algorithm repeatedly

over the training data, one could expect a comparable generalization error because the e�ective

parameter space that the online learning algorithm has explored is small. We can readily see

from the construction of M(z) in the proof of Lemma 2.2 that the weight w and the data z are

e�ectively Lagrange dual variables, and the �rst term and the third term are corresponding Legendre

transforms. This suggests that a proper regularization condition can be constructed or replaced

by a properly chosen convex duality. This observation has important consequences in algorithmic

design since we can intentionally create auxiliary variables by duality without any regularization.
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Finally, the proof technique of Lemma 2.2 is closely related to the potential-reduction method

for linear programming (cf. [33] and references therein), where a variant of M(z) with a ipped

sign for the second term can be used to show the polynomial convergence of certain interior point

algorithms. Similar to the proof of Lemma 2.2, the technique of bounding the number of steps is

also based on constant reduction of the potential function at each step by choosing an appropriate

� based on estimates of its �rst order term and its second order term in the Taylor expansion.

However, since Newton steps are often taken, the proofs for bounding such terms are more involved.

2.3 Consequences of the covering number bounds

In order to apply the covering number bounds to the regularization scheme (1), we would like to

extend these results to handle nonlinear compositions of linear functions. Such extensions are also

useful for other related methods such as projection pursuit regression, neural networks or radial

basis networks, etc. We consider the following system:

L([�;w]; x) = f(g(�; x) + wTh(�; x)); (5)

where x is the observation, and [�;w] is the parameter.

De�nition 2.3 A function f : Rm1 ! Rm2 is said to satisfy the Lipschitz condition with parameter

 if 8x; y: kf(x) � f(y)k � kx � yk, where k � k denote corresponding norms on the respective

spaces.

The default norm on R is kxk = jxj unless otherwise indicated. It is very easy to verify that the

following is valid if f is Lipschitz: log2Nr(f Æ g; �;Xn
1 ) � log2Nr(g; �=;X

n
1 ), where \Æ" denotes

function composition, and the metric in each space corresponds to the norm used in the Lipschitz

de�nition. In order to obtain general covering number bounds on the composition of functions, we

need to allow h to be a vector valued function. Note that the covering number results in Section 2.2

are not for vector valued functions | we have skipped such results since they are not very relevant

to the regularization problem (1) we are interested in. However, for completeness and background

purposes, we present an informally discussion on how to obtain more general covering number

results.

The simplest way to obtain a bound for a vector function is by summing the corresponding

bounds for its components: log2Nr([f1; : : : ; fd]; �; n) �
P

i
log2Nr(fi; �; n), where the metric in the

[f1; : : : ; fd] is taken to be the in�nity norm. Note that if we require the bound to be independent

of d, then Nr(fi; �; n) = 1 for i � u(�; n) where u(�; n) is a value independent of d. This can

be achieved by the same damping technique used in Theorem 2.6. We can also derive covering

number bounds for vector valued functions directly. If we consider w as a matrix in (4), then

bounds that generalize the corresponding theorems in Section 2.2 can be obtained. For example,

in Theorem 2.4, if we allow w to be matrices with Frobenius norm regularization, and assume that

we use 2-norms for all vectors in di�erent spaces, then the same result holds with the same proof.

Besides direct generalizations of theorems in Section 2.2, some special methods can be applied for
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special problems. An example is to exploit the symmetry property in neural networks to remove

the e�ect of dimensions in inner layers [3].

Since the vector valued covering number bounds discussed above are not relevant to the later

part of this paper, we shall not go into details. In the following, we give a result for (5), which shows

that if a linear classi�er contains a d-dimensional non-regularized part, then this non-regularized

part contributes a O(d) term to the logarithmic covering number logN .

De�nition 2.4 The total variation of a function f : R! R is de�ned as

TV(f; x) = sup
x0<x1���<x`�x

`X
i=1

jf(xi)� f(xi�1)j:

We also denote TV(f;1) as TV(f).

Lemma 2.3 If L([�;w]; x) = f(g(�; x) + wTh(�; x)), where f 2 [0;M ] is monotone and w is a

d-dimensional vector. Assume that f : R! [0;M ] is Lipschitz with parameter , and assume that

kwkq � c, then 8�1; �2 > 0, and n > 2(d+ 1):

log2Nr(L; �1 + �2; n) � (d+ 1) log2[
en

d+ 1
max(bM

2�1
c; 1)] + log2Nr([g; h]; �2=; n);

where metric of [g; h] is de�ned as jg1 � g2j+ ckh1 � h2kp (1=p+ 1=q = 1).

Proof. Let �1; : : : ; �u be an �2= covering of [g; h] in r-norm (enlarge the parameter family if

necessary), and

Li(w; x) = f(g(�i; x) + wTh(�i; x)):

Note that fg(�i; x) + wTh(�i; x) : i = 1; : : : ; ug forms an �2= covering of g(�; x) + wTh(�; x),

therefore by the Lipschitz condition of f , fLi(w; x)g gives an �2 covering of L in r-norm. We thus

only need to show that each Li can be �1-covered by at most [ en
d+1

max(b M
2�1
c; 1)]d+1 vectors in

r-norm.

Since the pseudo-dimension (cf. [15]) of wT y+ z is at most d+1 and a monotone function does

not increase it, thus we have

log2N1(Li; �1; n) � log2

d+1X
i=0

�
n

i

�
bM
2�1

ci:

By a well-known bound
P

d

i=0

�
n

i

�
� (en=d)d for all n > 2d (cf. [5], pp. 218), we obtain

log2Nr(Li; �1; n) � log2N1(Li; �1; n) � (d+ 1) log2[
en

d+ 1
max(bM

2�1
c; 1)]:

2

17



Theorem 2.9 If L([�;w]; x) = f(g(�; x) +wTh(�; x)), where TV(f) <1 and f is Lipschitz with

parameter . Assume also that w is a d-dimensional vector and kwkq � c, then 8�1; �2 > 0, and

n > 2(d+ 1):

log2Nr(L; �1 + �2; n) � (d+ 1) log2[
en

d+ 1
max(bTV(f)

2�1
c; 1)] + log2Nr([g; h]; �2=; n);

where metric of [g; h] is de�ned as jg1 � g2j+ ckh1 � h2kp (1=p+ 1=q = 1).

Proof. Since TV(f; x) is monotone and it is easy to verify that TV(f; x) is Lipschitz with parameter

, thus the bound is valid with f(x) replaced by TV(f; x). Note that 8x1; x2, jf(x1) � f(x2)j �
jTV(f; x1)� TV(f; x2)j, thus the bound also holds for f(x). 2

An interesting observation from Theorem 2.9 is that we can allow some dimensions in (1) to be

non-regularized:

Example 2.1 In the above theorem, a special case is when h(�; x) = h(x) independent of �. In

this case, the covering number of [g; h] is equivalent to the covering number of g. We can set

c = 1, which means that w is not regularized. The bound on covering number for L([�;w]; x) =

f(g(�; x) + wTh(x)) is

log2Nr(L; �; n) � (d+ 1) log2[
en

d+ 1
max(bTV(f)

�
c; 1)] + log2Nr(g; �=2; n)

for all � > 0 and n > 2(d+ 1). 2

Example 2.2 Consider classi�cation by hyperplane: L(w; x) = I(wTx � 0) where I is the set

indicator function. Let L0(w; x) = f0(w
Tx) be another loss function where

f0(z) =

8>><
>>:
1 z < 0

1� z z 2 [0; 1]

0 z > 1

:

Instead of using ERM to estimate the parameter that minimizes the risk of L, consider the

scheme of minimizing the empirical risk associated with L0, under the assumption that kxk2 � b

and constraint that kwk2 � a. Denote the estimated parameter by wn. It follows from Theorem 2.1

and the covering number bound of Theorem 2.4 that

P (ExI(w
T

nx � 0) > inf
w
Exf0(w

Tx) + 16�) � 8 exp(
�n�2
2

+ d2a
2b2

�2
e ln(4a2b2=�2 + 1)):

The PAC style bound is: with probability of at least 1� �:

ExI(w
T

nx � 0) � inf
kwk2�a

Exf0(w
Tx) +O(

s
n1=2ab ln(nab+ 2) + ln 1

�

n
):
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The corresponding average generalization error is bounded by

inf
kwk2�a

Exf0(w
Tx) +O(

1p
n
+
(ab)1=2

n1=4
ln1=2(nab+ 2)):

Note that this bound shows that if n is large, wn is not much worse than the optimal w that

minimizes the modi�ed risk Exf0(w
Tx). This suggests the scheme of minimizing the empirical

risk of Eempf0(w
Tx) which has a better convergence behavior than minimizing EempI(w

Tx � 0)

directly.

We can also apply Theorem 2.2 and the covering number bound of Theorem 2.7 to give the

following PAC bound: for any  > 0, with probability of at least 1� �,

ExI(w
T

nx � 0) � EXn

1
I(wT

nx � 2) +

s
32

n
(ln 4 + 36

a2b2

2
ln(2d4ab= + 2en+ 1) + ln

1

�
):

Now, by taking i as 1=2
i and pi = 1=i(i + 1) in Corollary 2.1, we obtain with probability of at

least 1� �:

ExI(w
T

nx � 0) � EXn

1
I(wT

nx � 2) +O(

s
1

n
(
a2b2

2
ln(ab= + 2) + lnn+ ln

1

�
))

for all  2 (0; 1]. At this point, a still needs to be data independent. However, note that the

inequality always holds when ab � O(
p
n), therefore by choosing ai = 

p
n=(2ib) with pi =

1=i(i + 1), we obtain with probability of at least 1� �:

ExI(w
T

nx � 0) � EXn

1
I(wT

nx � 2) +O(

s
1

n
(
a2b2

2
ln(ab= + 2) + lnn+ ln ln(

p
n=ab+ e) + ln

1

�
))

for all a > 0 and  2 (0; 1]. The average generalization error is bounded by

En inf
;a

[EXn

1
I(wT

nx � 2) +O(
ab= � ln1=2(ab= + 2) + ln1=2 n+ ln1=2 ln(

p
n=ab+ e)

n1=2
)];

where EXn

1
is the empirical average and En is the expectation with respect to the joint distribution

of Xn
1 (where each of its component independently taken from the same distribution). This bound

is better than the bound obtained with Theorem 2.1 if on average, EXn

1
I(wT

nx � 2) is small with

a relatively large . However, compared with the asymptotic results in Section 3, PAC bounds are

often sub-optimal. 2

In the rest of this section, we shall study PAC style bounds for (1). We assume that the data

is normalized so that supx kxkp � b for some b > 0. Assume also that Rg(w) � h(g(w)) holds with

an increasing function h, where we take Rg(w) to be an appropriate regularization condition on w

with respect to the observed data. For example, we can let Rg(w) = kwkq0 with q0 � p=(p � 1) if

2 � p <1; and let Rg(w) = kwk1 + entro�(w) if p =1. We shall also assume that f; g � 0 and f
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is non-increasing for simplicity.

Let ŵ be an arbitrarily chosen parameter. Given n random data, let wn be the solution of (1)

under the empirical distribution. It follows that

Eempf(w
T

nxy) + �g(wn) � Eempf(ŵ
Txy) + �g(ŵ):

Therefore g(wn) � f(�kŵkqb)=� + g(ŵ). Let a = h(f(�kŵkqb)=� + g(ŵ)), then Rg(wn) � a,

where q = p=(p � 1). Note that for regularization conditions we described earlier, if we choose

ŵ = 0, then g(ŵ) = 0. Therefore a = h(f(0)=�). On the other hand, if we can choose ŵ so that

P (f(ŵTxy) = 0) = 1, then a = h(g(ŵ)) is independent of �. In particular, let f(z) = 0 when

z � 1, and assume that the data is linearly separable by a large margin with a small ŵ, then the

regularization condition is independent of the choice of �. In this case, we can choose � such that it

is close to zero. However, if the data is not linearly separable (or separable by a very small margin),

then � appears in the regularization condition. In such case, a non-zero choice of � is important.

Similar to Example 2.2, we can obtain generalization bounds of (1) using Theorem 2.1 and

Theorem 2.7: with probability of at least 1� �,

Ex;yI(w
T

nxy � 0) � Eempf0(w
T

nxy) +O(

s
(p� 1)n1=2ab ln(nab+ 2) + ln 1

�

n
);

for 2 � p <1 with q = p=(p� 1) regularization. The average generalization error is bounded by

EnEempf0(w
Txy) +O(

1p
n
+ p(ab)1=2 ln1=2(nab+ 2)=n1=4):

We can also obtain generalization bounds using Theorem 2.2: with probability of at least 1��,

Ex;yI(w
T

nxy � 0) � EempI(w
T

nxy � 2) +O(

s
p� 1

n
(
a2b2

2
ln(ab= + 2) + lnn+ ln

1

�
))

for all  2 (0; 1]. Also the following bound holds with probability at least 1 � �, for all  2 (0; 1]

and �:

Ex;yI(w
T

nxy � 0) � EempI(w
T

nxy � 2) +O(

s
p

n
(
a2b2

2
ln(

ab


+ 2) + lnn+ ln ln(


p
n

ab
+ e) + ln

1

�
)):

The corresponding average generalization error is bounded by

En inf
;�

[EempI(w
T

nxy � 2) +O(
p

n1=2
(1 + ab ln1=2(

ab


+ 2)= + ln1=2 n+ ln1=2 ln(


p
n

ab
+ e)))]:

In all of the above bounds, the constants in the O(�) notation are universe. Although in the

�nal bound, a as a function of � has to be derived from a data independent choice of ŵ, we can

replace a by Rg(wn) and employ techniques from [30] to obtain more re�ned bounds (for simplicity,
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we skip such analysis in this paper). Also note that for p =1 with entropy regularization, we can

derive similar bounds by setting p = 2 in the above inequalities. Another important observation is

that for our problems, bounds obtained from Theorem 2.1 are inferior to the corresponding bounds

obtained from Theorem 2.2. Generally speaking, this will be true if N1 is comparable with N1.

We shall now discuss the convergence of R(wn) to infw R(w). We assume that infwR(w) is

achieved at w�. Since f is non-increasing, by results obtained in this section and a modi�ed version

of Corollary 2.1, we know that with probability of at least 1� �, for all  2 (0; 1]:

Ex;yf(w
T

nxy + ) + �g(wn) �Eempf(w
T

� xy) + �g(w�) + f(�ab) �

O(

s
p

n
(
a2b2

2
ln(

ab


+ 2) + lnn+ ln

1

�
)):

This implies that with probability of at least 1� �, for all  2 (0; 1]:

Ex;yf(w
T

nxy + ) + �g(wn) �Ex;yf(w
T

� xy) + �g(w�) + f(�ab) �

O(

s
p

n
(
a2b2

2
ln(

ab


+ 2) + lnn+ ln

1

�
)):

Now assume the following uniform convergence condition on the expectation of f (which holds if f

is continuous):

lim
!0

Ex;y sup
w

[f(wTxy)� f(wTxy + )] = 0;

then it follows that R(wn) ! R(w�) in probability as n ! 1. Combined with stability results in

Section 4, we can infer that under appropriate choices of f and g, the parameter wn converges in

probability to w�. The bounds in this section also imply that the rate of convergence is exponential

in n. The exponential rate can still be obtained if we replace the requirement that kxkp � b with

an exponential decay condition on P (kxkp > b).

This consistency result on estimated parameter is the basis for the central limit theorem which

characterizes the asymptotic distribution of wn discussed in Section 3. An implication of the con-

vergence of parameter wn under regularization is that even though from Theorem 2.9, we can relax

the regularization condition for part of the dimensions without a�ecting good PAC generalization

bounds, it is still useful to impose such a condition due to the increased stability for estimating wn

(also see Section 4.1).

In the above discussion, the generalization error bounds are derived from over-estimates of the

training errors. This seems to imply that the only role of f in our PAC analysis is to serve as a

well-behaved (smooth, convex) upper bound for the mis-classi�cation error. Therefore to minimize

f , we also approximately minimize the mis-classi�cation error. Although this point of view is

plausible, it does not fully explain the practical e�ectiveness of the regularization method (1) since

the upper bound provided by f is usually a very poor estimate of the mis-classi�cation error. In

[38], we shall discuss a much more insightful point of view concerned with the modeling aspects of
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f , which is related to the invariance principle mentioned in Section 3.

3 Asymptotic analysis

The convergence results in the previous sections are in the form of convergence in probability, which

has a combinatorial avor. For problems involving di�erentiable function families with vector

parameters, it is often convenient to derive precise asymptotic results by using the di�erential

structure. The following derivation is motived from techniques appeared in [17]. Due to the scope

of this paper, we shall only keep the analysis at an intuitive level, and assume that all conditions

appearing in the derivation are met. A rigorous treatment that includes the necessary regularity

conditions, as well as issues related to the rate of convergence to the asymptotic generalization

error, and consequences of the minimax formulation discussed later in this section, will be given in

another report.

Assume that the parameter � 2 Rm in (2) is a vector and L is a smooth function. Let �� denote

the optimal parameter, then �� satis�es the following estimation equation:Z
r�L(�

�; x) dP (x) = 0;

where r� is the derivative with respect to �. We denote r�L by a vector function 	.

Now consider the empirical risk minimization estimator �erm(X
n
1 ) from n observations Xn

1 . Let

Pn(x) be the empirical distribution of x with the n observations, thenZ
	(�erm(X

n

1 ); x) dPn(x) = 0: (6)

If n is large, then j�� � �erm(X
n
1 )j is small with high probability (see discussions at the end of

Section 2.3), so that

	(�erm(X
n

1 ); x)�	(��; x) � r�	(�
�; x)(�erm(X

n

1 )� ��):

Substituting into equation (6), we obtainZ
	(��; x) dPn(x) �

Z
r�	(�

�; x)(�� � �erm(X
n

1 ; x)) dPn(x): (7)

Assume that

V =

Z
r�	(�

�; x) dP (x) (8)

is non-singular, and let

	n =

Z
	(��; x) dPn(x):
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Then �� � �erm � V �1	n, and

�R(�erm) �
Z

1

2
(�erm � ��)Tr�	(�

�; x)(�erm � ��) dP (x) � 1

2
	T

nV
�1	n:

The most interesting case is when the central limit theorem holds:
p
n	n asymptotically ob-

serves a Gaussian distribution with O( 1p
n
) mean and covariance matrix U , where

U =

Z
	(��; x)	(��; x)T dP (x): (9)

The asymptotic mean squared error of the empirical risk minimization is thus

E (�erm � ��)2 � 1

n
tr(V �2U); (10)

where we use the symbol \tr" to denote the trace of a matrix. More generally, for any evaluation

function h(�) such that rh(��) = 0:

E h(�erm) � h(��) +
1

2n
tr(V �1r2h � V �1U); (11)

where r2h is the Hessian matrix of h at ��. A more complicated formula can be derived for

rh(��) 6= 0, which we shall not describe in this paper. In particular, let h(�) = R(�), then the

asymptotic expected generalization error is

E R(�erm) � R(��) +
1

2n
tr(V �1U): (12)

Note that this approach assumes that the optimal solution is unique. For (1), the uniqueness

of solution can be guaranteed by the convexity condition in Lemma 4.1.

If (12) is valid, then it provides a better large sample description than PAC style bounds since

the latter predict a generalization performance of at the best R(��) + O(1=
p
n) (unless perfect

generalization can be achieved: see discussions at the end of Section 2.1). At the �rst glance, this

discrepancy may appear mysterious since it is well-known that many of the PAC bounds are worst

case tight for each �xed sample size. However, there are a number of reasons that can explain why

this discrepancy is not contradictory: �rstly, the worst case tightness in �xed sample size does not

imply the asymptotic tightness of PAC bounds with a �xed distribution; also (12) is distribution

dependent, and could not handle certain problems of combinatoric nature; another important reason

is that the technique for proving the PAC style bounds (see the proof of Theorem 2.2) is inherently

sub-optimal asymptotically since it makes the worst case assumption that all points in a covering

of the loss function is equally likely to become an empirical estimate of the parameter (for example,

see [14] for discussions of this point).

For classi�cation problem (1), the estimation equation becomes

Ex;yf
0(wT

� xy)xy + �rg(w�) = 0: (13)
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Therefore let \cov" denote covariance, we have

	(w�; x; y) = f 0(wT

� xy)xy + �rg(w�) = f 0(wT

� xy)xy �Ex;yf
0(wT

� xy)xy;

U(w�) = cov(f 0(wT

� xy)xy);

V (w�) = Ex;yf
00(wT

� xy)xx
T + �r2g(w�):

If Ex;yf
00(wTxy)xxT is a semi-positive de�nite matrix as in the case of convex f , then we have

V (w) � �r2g(w). It is not diÆcult to see that if A � B > 0 and C � 0, then tr(A�1C) � tr(B�1C)

assuming that A, B and C are all symmetric matrices. The reason is that the trace of a matrix

is the sum of its eigenvalues. By the Courant-Fischer minimax theorem for symmetric generalized

eigenproblems (cf. [10]), it is easy to verify that each eigenvalue of A�1C is no larger than the

corresponding eigenvalue of B�1C.

Now if we assume that f is convex and r2g(w�) is positive de�nite, then we obtain the following

asymptotic bound for expected generalization error:

R(w�) +
1

2�n
tr[(r2g(w�))

�1cov(f 0(wT

� xy)xy)]:

In this case, the PAC style analysis in Section 2 and the stability analysis in Section 4.1 imply that

the rate of convergence of wemp to w� is independent of dimension under an appropriate distance

measure (but it may depend on �), which suggests that the asymptotic results obtained in this

section can be applicable even with relatively small sample size when � is not close to zero.

Example 3.1 We would like to study a variant of the support vector machine: Consider L(�; x) =

f(�Tx) + 1
2
��2,

f(z) =

(
1� z z � 1

0 z > 1
:

Because of the discontinuity in the derivative of f , the estimation equation may not hold. However,

if we make assumption on the smoothness of the distribution x, then the expectation of the derivate

over x can still be smooth, so that the estimation equation (6) and its linear approximation (7) are

valid.

Consider the optimal parameter �� and let S = fx : ��Tx 2 [0; 1]g. Note that ��� = Ex2Sx,

and U = Ex2S(x � Ex2Sx)(x � Ex2Sx)T . Assume that 9 > 0 s.t. P (��Tx � ) = 0, then

V = �I +B where B is a positive semi-de�nite matrix. It follows that

tr(V �1U) � tr(U)=� � Ex2Sx2

Ex2S��Tx
k��k22 � sup kxk22k��k22=:

Now, consider �n obtained from observations Xn
1 = [x1; : : : ; xn] by minimizing empirical risk
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associated with loss function L(�; x), then

ExL(�emp; x) � inf
�
ExL(�; x) +

1

2n
sup kxk22k��k22

asymptotically. Let � ! 0, this scheme becomes the optimal separating hyperplane [36]. The

asymptotic bound is better than the bound provided by the PAC bounds with �xed �. In fact, if

we consider an upper bound f of the classi�cation error such that the derivative vanishes at ��,

then it follows that when � is suÆciently small, the expected classi�cation error goes to zero at a

rate faster than O(1=n) asymptotically; and if we choose a smooth function f , then the rate can

be faster than any polynomial of 1=n asymptotically.

In [38] , the following loss function will also be considered which is numerically easier to mini-

mize: L(�; x) = g(�T x) + 1
2
��2, where

g(z) =

(
(z � 1)2 z 2 [0; 1]

�(z � 1)2 z > 1
:

For linearly separable problems, the method also becomes the optimal separating hyperplane when

�! 0 and �! 0. 2

Note that although the bound obtained in the above example is very similar to the mistake

bound for the perceptron online update algorithm, we may in practice obtain much better esti-

mates from (12) by plugging in the empirical data. For a non-square regularization condition, an

appropriate transformation of the parameter space w is needed in order to obtain desirable con-

vergence behaviors (e.g. dimensional independent convergence to the central limit distribution).

This transformation can be achieved by using a link function, which has appeared in the proofs

of Theorem 2.7 and Lemma 2.2. For our purpose, equation (13) has to be modi�ed to take the

transformation into account. Essentially, a link function transforms the metric of regularization

in the parameter space so that it behaves like the square metric, and hence all the derivations in

this section remain similar. More details about the link function approach in the context of linear

classi�cation can be found in [8] and references therein.

If no regularization is used, then the stability results in Section 4.1 do not hold. This implies

that the solution does not have the good asymptotic behavior demonstrated in this section. Since

the estimated parameter is less stable, therefore a larger portion of the parameter space needs to

be explored in order to �nd an optimal solution of (1), and hence in the worst case, there can be

more chance of choosing an inferior parameter.

There are a few di�erent ways to use (11) for the purpose of analyzing learning problems.

Assume that h(�) = Ex2DLh(�; x) is the true risk we are interested in. If we know that the loss

function obeys an invariance principle with respect to the distribution so that the optimal solution

��(D) is also the minimum of �h(�) = Ex2DL�h(�; x) for all
�h belonging to a certain function family

H and for D belonging to a certain distribution family �. In this case, we can de�ne the best
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estimation rule corresponding to the empirical estimate with �h 2 H as the minimax solution of

�h = argmin
�h

max
D2�

tr(V �2
�h

U�h)

if we are interested in the convergence of the parameter (as in regression problems), or

�h = argmin
�h

max
D2�

tr(V �1
�h
r2h � V �1

�h
U�h)

if we are interested in the Lh loss. This approach has been used in statistics. For example, the

maximum likelihood estimate is asymptotically optimal under quite general conditions in the sense

of parameter estimation. A similar criterion was used in [17] to obtain asymptotically optimal

robust estimators under certain invariance assumptions of the data distribution.

Another way to apply (11) is to consider a parametric family of functions h that converges

to h. We want to decide for a �xed large sample size n, which  is an appropriate choice so that

empirical estimation with h should be employed. Besides some standard statistical techniques

(such as cross validation methods), we can use PAC style bounds to select  with data dependent

uniform convergence of h as in Corollary 2.1. However, PAC bounds are often too loose for most

real problems, therefore a parameter selection method based on such bounds can often be quite

sub-optimal. On the other hand, the asymptotic formulation (11) is precise for large sample sizes.

It can also be much more useful for real problems even when the sample size is small. In this

case, although a uniform rate of convergence in  is helpful, it is not crucial for practical purposes.

There are also techniques to impose uniform convergence, such as the prior penalty method on the

 space (cf. Corollary 2.1). Despite of its relevance to the problem of selecting the regularization

parameter  in (1), we shall not study this topic further in this report due to the limitation of

space.

4 Numerical aspects

In the previous discussions, we have indicated that the numerical stability of the solution is very

important to learning problems. One reason is that this is required for the convergence of parameter

which is the basic assumption of asymptotic analysis. Another reason is that in reality, the PAC

learning model (2) is often violated in the sense that Xn
1 = fx1; : : : ; xng are not independently

drawn from a �xed distribution due to a number of reasons: one possible cause is dependency

among data; another possible cause is the questionable assumption that the training data is drawn

from the same distribution as the test (future) data. In case that the formulation is unstable, a

slightly error in model assumption can cause a large change in parameter, and such large change in

parameter often has unpredictable behavior as far as the generalization performance is concerned.

From the computational point of view, a stable formulation is very desirable and is often required

for designing eÆcient and robust numerical algorithms. Since a stable and eÆcient algorithm tends

to search a small portion of the parameter space, it can be implied that a stable solution leads to

good generalization performance.
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To investigate the stability problem, we shall �rst note that the proposed formulation (1)

resembles the standard form of regularization method used for regression problems in numerical

analysis and statistics. Since the method was originally proposed in the context of solving ill-posed

linear systems Ax = b [31, 32], it is very useful to analyze (1) from the ill-posed system point

of view. Although in general, rigorous mathematical treatments of ill-posed problems were often

done for systems in in�nite dimensional spaces, we shall assume that the spaces we consider are

�nite dimensional. We replace some traditional functional analysis aspects of ill-posed problems

by sensitivity analysis which will lead to meaningful results in �nite dimensional spaces.

The readers shall keep in mind that most of our analysis will also hold for in�nite dimension:

the compactness assumption of Lemma 4.1 of fz : g(z) � rg can be replaced by weak* compactness

and sequentially weak* compactness with appropriate regularity assumptions on f , g and the

distribution of (x; y). Note that if we assume that w is in the dual space of a separable normed

linear space containing data x, then any bounded closed subset is sequentially weak* compact

[27], therefore we can simply assume that fz : g(z) � rg is bounded which is a relatively mild

assumption. For simplicity, we shall skip this type of analysis, although in�nite dimensional spaces

can occur in learning problems, such as the kernel formulation of support vector machines.

4.1 Stability analysis

For simplicity, we assume that f � 0 is convex and non-increasing, and g � 0 is a strictly convex.

We also assume that f(0) > 0, and both f and g are di�erentiable.

Lemma 4.1 If f � 0 is continuous convex and g � 0 is continuous strictly convex, then 8� > 0,

and any distribution (x; y), the function Ex;yf(w
Txy) + �g(w) is strictly convex. Assume also that

Ex;yf(w
Txy) is a continuous function of w on a closed convex set 
, and that 8r > 0, the set


 \ fz : g(z) � rg is compact, then there exists a unique w that minimizes (1) on 
.

Proof. To verify that Ex;yf(w
Txy) + �g(w) is strictly convex, we simply need to check that 8� 2

(0; 1) and w1 6= w2: Ex;yf((�w1+(1��)w2)
Txy) � Ex;y�f(w

T
1 xy)+(1��)f(wT

2 xy) and �g(�w1+

(1� �)w2) < �(�g(w1) + (1� �)g(w2)).

If fz : g(z) � rg is compact for all r > 0, then 8ŵ 2 
, (1) is equivalent to minimizing

Ex;yf(w
Txy) + �g(w) under the condition that w 2 fz : g(z) � g(ŵ) + f(ŵ)=�g. Therefore a

solution of (1) exists. Note that the set fz : g(z) � rg is convex, and Ex;yf(w
Txy) + �g(w) is

strictly convex, therefore the uniqueness of the solution follows from the standard results in convex

programming (cf. [7], chap 6). 2

Under the assumptions of Lemma 4.1, for a �xed distribution of (x; y), it follows that there is

a unique solution w(�) that minimizes (1) for � > 0. We shall now discuss the stability of w(�)

when (1) is only approximately minimized: assume � > 0 and w satis�es

Ex;yf(w
Txy) + �g(w) � Ex;yf(w(�)

Txy) + �g(w(�)) + �: (14)

Since g is strictly convex, we can de�ne a distance function dg(w;w
0) (also called Bregman

function [4]) as dg(w;w
0) = g(w0)� g(w)� (w0 �w)Trg(w). It has the property that dg(w;w0) � 0
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and dg(w;w
0) = 0 if and only if w = w0.

Since w(�) is the optimal solution of the convex programming problem (1), therefore the �rst

order condition holds:

Ex;yf
0(w(�)T xy)xy + �rg(w(�)) = 0:

Combine this equality with (14), we obtain

[Ex;yf(w
Txy)�Ex;yf(w(�)

Txy)� (w � w(�))T f 0(w(�)T xy)xy] + �dg(w(�); w) � �:

Since f is convex, the Bregman function of Ef is non-negative, thus we get the following bound:

Theorem 4.1 Under the assumption of (14), we have

dg(w(�); w) � �=�:

In general, one can obtain a lower bound of dg by Taylor expansion:

Example 4.1 Consider the regularization function g(w) = kwk22,

r2g(w) = 2kw � w(�)k22;

we obtain kw � w(�)k2 �
p
�=2�.

Consider the regularization function g(w) = kwkqq with q � 2. The following inequality holds

for any real number x > 0 and �:

j�=2jq � jx+�jq � xq � qxq�1�:

Therefore we obtain kw � w(�)kq � 2(�=�)1=q . 2

If a lower bound of dg can be obtained locally (for example, by local approximation from Taylor

expansion), then a perturbation bound of the solution can still be obtained:

Corollary 4.1 Assume that there exists a continuous function lg such that lg(w1; w2) � � implies

lg(w1; w2) � dg(w1; w2), then if � < ��, we have

lg(w(�); w) � dg(w(�); w) � �=�:

Proof. Assume the claim is not true, then by the convexity of g, there exists a w such that

lg(w(�); w) = � and dg(w(�); w) � �. It follows from the assumptions that

lg(w(�); w) � dg(w(�); w) � �=� < �;
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which is a contradiction to lg(w(�); w) = �. 2

Our analysis points out that the approximation required to achieve the same parameter estima-

tion accuracy needs to be decreased linearly with respect to �. This is consistent with the limiting

optimization problem of Theorem 4.2 as � ! 0 since a perturbation of � to the limiting objective

function in the feasible set contributes �� to (1).

4.2 Properties of the solution curve

We are interested in the behavior of w(�) as �! 0.

Theorem 4.2 Under the assumptions of Lemma 4.1, consider the solution curve w(�) of (1).

1. if 0 < �1 < �2, then

Ex;yf(w(�1)
Txy) + �1g(w(�1)) � Ex;yf(w(�2)

Txy) + �2g(w(�2));

2. if 0 < �1 < �2, then

Ex;yf(w(�1)
Txy) � Ex;yf(w(�2)

Txy);

g(w(�1)) � g(w(�2));

3. if D = fw : Ex;yf(w
Txy) = infwEx;yf(w

Txy)g is nonempty, then as � ! 0, w(�) converges

to the unique solution of the following problem: infw2D g(w);

4. if D = fw : Ex;yf(w
Txy) = infw Ex;yf(w

Txy)g is empty, then

lim
�!0

w(�) =1:

Proof. Note that by de�nition, Ex;yf(w(�1)
Txy) + �1g(w(�1)) � Ex;yf(w(�2)

Txy) + �1g(w(�2)),

therefore 1. is established.

2.: Note that

Ex;yf(w(�1)
Txy) + �1g(w(�1)) � Ex;yf(w(�2)

Txy) + �1g(w(�2)); (15)

Ex;yf(w(�2)
Txy) + �2g(w(�2)) � Ex;yf(w(�1)

Txy) + �2g(w(�1)): (16)

We multiply the �rst of the above two inequalities by �2=�1, and add the resulting inequality to

the second inequality:

�2

�1
Ex;yf(w(�1)

Txy) +Ex;yf(w(�2)
Txy) � �2

�1
Ex;yf(w(�2)

Txy) +Ex;yf(w(�1)
Txy):

That is,

(
�2

�1
� 1)(Ex;yf(w(�1)

Txy)�Ex;yf(w(�2)
Txy)) � 0;
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which implies that Ex;yf(w(�1)
Txy) � Ex;yf(w(�2)

Txy). To prove the second part of 2, we add

(15) and (16) to obtain:

�1g(w(�1)) + �2g(w(�2)) � �1g(w(�2)) + �2g(w(�1));

which implies that (�1 � �2)(g(w(�1))� g(w(�2))) � 0. That is g(w(�1)) � g(w(�2)).

3.: Since g(w) is strictly convex and it is easy to verify that D is a convex set, thus by the same

argument used in Lemma 4.1, there is a unique solution of the problem infw2D g(w) as long as D

is nonempty. Let ~w be the solution, then

Ex;yf(w(�)
Txy) + �g(w(�)) � Ex;yf( ~w

Txy) + �g( ~w):

Since Ex;yf( ~w
Txy) � Ex;yf(w(�)

Txy), we obtain g(w(�)) � g( ~w). Therefore Let D� = fw :

Ex;yf(w
Txy) � Ex;yf( ~w

Txy)+�g( ~w)g and ~D = fz : g(z) � g( ~w)g, then w(�) 2 D�\ ~D. Note that

D�\ ~D is a compact convex set, and for �1 � �2, D�1
� D�2

, therefore if the claim is not true, then

there exists a subsequence of positive �1 > �2 > � � � such that limi �i = 0 and ŵ = limi w(�i) 6= ~w.

However, note that ŵ 2 \�>0D� = D, and g(ŵ) = limi g(w(�i)) � limi g( ~w) = g( ~w), thus by

de�nition, ŵ = ~w, which is a contradiction.

4.: Assume that there is a sequence of positive values �1 > �2 > � � � such that limi �i = 0

and w(�i) is bounded, then there is a convergent subsequence of w(�i). We can assume the

subsequence to be the whole sequence �i. Let ŵ = limiw(�i), then by the arguments used in 3.:

ŵ 2 \�>0D� = D. This implies that D is not empty, which is a contradiction. 2

If (x; y) is linearly separable and we pick f such that f(z) > 0 when z < 1 and f(z) = 0 when

z � 1, then from the above theorem, the limit of w(�) as � ! 0 is the solution of the following

problem:

inf g(w); s:t:P (wTxy � 1) = 1;

which gives the optimal margin classi�er when we pick g(w) = w2. Clearly, the choice of g(w) = w2

is good when the 2-norm of x is well bounded. If the 1-norm of x is bounded, and if we only

consider w so that each components is positive and kwk1 =
P

i
wi = 1, then it is standard to pick

a choice g(w) = �P
i
wi logwi.

To demonstrate that D = fw : Ex;yf(w
Txy) = infw Ex;yf(w

Txy)g may be empty, we consider

the case of exponential function f(z) = exp(�z), and assume that (x; y) is linearly separable by ~w:

P ( ~wTxy > 0) = 1. In this case, let �! +1, then Ex;yf(� ~w
Txy)! 0, but there does not exist w

such that Ex;yf(w
Txy) = 0. Similar phenomenon can still happen even when (x; y) is not linearly

separable. If f(z) = 0 for some z > 0, then D is always non-empty when (x; y) is drawn from a

�nite sample. If (x; y) is drawn from an arbitrary in�nite sample, D can be empty.

In the following, we shall assume that f and g are suÆciently smooth functions and it is valid

to change the order of taking derivative and expectation Ex;y (this will be true by simply assuming

x is bounded and f suÆciently smooth).
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Theorem 4.2 implies that the curve w(�) has interesting properties around � = 0. In particular,

if (x; y) is linearly separable, and f is appropriately chosen, then w(�) converges to the optimal

separating hyperplane in the g(�) criterion. It is useful to study more carefully the behavior of

w(�) around � = 0. Such study resembles the trajectory analysis in nonlinear programming using

interior point/penalty function approaches (cf. [7]).

The optimal solution w(�) (denoted as w for simplicity) is the unique solution of the �rst order

condition:

Ex;yf
0(wTxy)xy + �rg(w) = 0: (17)

We di�erentiate with respect to � and w in (17), and obtain

Ex;yf
00(wTxy)xxTdw + �r2g(w)dw +rg(w)d� = 0;

where r2g(w) indicates the Hessian matrix of g(w) with respect to w. It follows that w(�) satis�es

the following di�erential equation:

dw

d�
= �(Ex;yf

00(wTxy)xxT + �r2g(w))�1rg(w): (18)

Let ~w = w(0). If Ex;yf
00( ~wTxy)xxT is full rank, then the system is well-behaved at 0. However,

in case Ex;yf
00( ~wTxy)xxT is not full rank (which will happen for example, when (x; y) is linearly

separable and f(z) = 0 for some z > 0 or the problem dimension is larger than the sample size),

then more careful analysis has to be carried out. Note that if rg( ~w) = 0, then ~w achieves both the

minimum of g( ~w) and the minimum of Ex;yf(w
Txy), therefore w(�) = ~w for all � > 0. We shall

now assume that rg( ~w) 6= 0.

We assume that for a norm k � k of w, there exists a continuous function G(�) de�ned on the

unit ball B = f�w : k�wk = 1g, such that 9k > 0,

Ex;y[f
0(( ~w + ��w)Txy)� f 0( ~wTxy)]xy = �kG(�w) + o(�k) (19)

uniformly as �! 0+ when �w 2 B (that is, the rate of o(�k) is independent of �w).

To give an example for (19), consider f(z) = 0 when z � 1 and f(z) = (1 � z)k+1 when z < 1.

Also assume that the data distribution (x; y) comes from a �nite sample (xi; yi) (i = 1; : : : ; n) and

is separable. Note that by Theorem 4.2, ~wTxiyi � 1. Let j = 1; : : : ; � denote the indices such that

~wTxjyj = 1 and k � k is the 2-norm, then for j � �,

f 0(( ~w + ��w)T xjyj)

=f 0(1� �kxjk cos(�w;�xjyj))
=(1 + k)�kkxjkkmax(cos(�w;�xjyj); 0)k:
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It follows that we can set

G(�w) =
1 + k

n

�X
j=1

kxjkkmax(cos(�w;�xjyj); 0)k:

We shall note that in the in�nite sample case or as n ! 1, the �nite sample analysis is not very

meaningful since � needs to be very small so that a sample such that ~wTxiyi = 1 + � for small �

does not hit the boundary ( ~w+��w)Txiyi = 1. However, (19) can still be valid if the distribution

is \smooth".

Under the assumption of (19), we let w(�) = ~w+�(�)�w(�) where k�w(�)k = 1. We approx-

imate (17) using (19) and the Taylor expansion of �rg(w) at ~w to obtain:

�(�)kG(�w(�)) + �rg( ~w) + o(�+ �(�)k) = 0:

Therefore in general when rg( ~w) 6= 0, we have � = O(�(�)k). In the non-degenerate situation

where lim�!0kG(�w(�))k 6= 0:

rg( ~w) = lim
�!0

��(�)k

�
G(�w(�));

and �(�) = O(�1=k). It follows that the more smooth f is (as k is large), the slower the convergence

of w(�) ! ~w as � ! 0 when (x; y) is separable. As we have indicated before: if we take f(z) =

exp(�z) which is in C1, then ~w is in�nity, which means that w(�) diverges.

Even though w(�) can converge slowly or be non-di�erentiable at � = 0, we show that R0(�) =

Ex;yf(w(�)
Txy) is always di�erentiable at � = 0. In fact, since

Ex;yf(w(�)
Txy) + �g(w(�)) � Ex;yf( ~w

Txy) + �g( ~w);

therefore we always have

Ex;yf(w(�)
Txy)�Ex;yf( ~w

Txy) � �[g( ~w)� g(w(�))]:

Since lim�!0 g(w(�)) = g( ~w), therefore

R0(�)�R0(0) = o(�);

which means that the derivative of Ex;yf(w(�)
Txy) at � = 0 is zero. We also obtain an inequality

R0(�)�R0(0) � �g( ~w);

indicating that the convergence rate of R0(�) depends on the magnitude of ~w.
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4.3 Perturbation analysis

In the following analysis, we are interested in the behavior of the solution of (1) under a modi�cation

of the system. Such modi�cation can arise from di�erent sources, such as error caused by numerical

procedures for solving (1), or violation of i.i.d. sample assumption, or violation of the assumption

that training sample and test sample are drawn from the same distribution, or even mis-labels

in the training set. We assume that the perturbation can either be a small change of coordinate

x ! x + �x, or a small percentage of wrong data including possible mis-labeling of y or a large

change of �x. We can formulate the problem as follows:

w�x;�(�) = inf
w
Ex;y;�x;�f(w

T (x+�x)�y) + �g(w); (20)

where E�xk�xk is small under certain norm of x and � = �1 is a random sign parameter having

a small probability to be �1.
In the following, we study the solution behavior under the assumption that

jEx;y;�x;�f(w
T (x+�x)�y)�Ex;yf(w

Txy)j � � (21)

when dg(w(�); w) � �, where � < �=2�. Under this model of perturbation, outliers that may cause

extremely damaging e�ect to the estimation are not considered. Since

Ex;y;�x;�f(w�x;�(�)
T (x+�x)�y) + �g(w�x;�(�))

�Ex;y;�x;�f(w(�)
T (x+�x)�y) + �g(w(�));

therefore if dg(w(�); w�x;�(�)) � �, then

Ex;yf(w�x;�(�)
Txy) + �g(w�x;�(�)) � Ex;yf(w(�)

Txy) + �g(w(�)) + 2�:

By Corollary 4.1, we obtain the following bound:

Theorem 4.3 Under the assumption of (21), we have

dg(w(�); w�x;�(�)) � 2�=�:

This theorem implies that when � > 0, the solution w(�) is stable under a small perturbation.

However, when � ! 0, w(�) is more and more sensitive to perturbation. At � = 0, for many

problems, a small perturbation of the data can cause a large modi�cation of ~w.

For example, assume that (x; y) is linearly separable and we choose a function f such that

f(z) > 0 when z < 1 and f(z) = 0 when z � 1, then P ( ~wTxy � 1) = 1. If we add a non-zero

percentage of (x0; y0) such that kx0k = � is small and ~wTx0y0 > 0, then by the characterization in

Theorem 4.2, the solution ~w0 must satisfy the condition k ~w0k � 1=� with norm of w dual of that

of x0. Such modi�cation has completely unpredictable e�ect since ~w0 can approach 1 under small

perturbation even if ~w is small.

Note that bounds from the PAC analysis in Section 2 depends heavily on k ~w0k, therefore a
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small perturbation of the data can cause a signi�cant decrease of generalization performance. This

analysis again demonstrate the importance of regularization which improves the numerical stability

of the solution.

5 Discussions

In this paper, we have studied some theoretical aspects of using the regularization formulation (1)

for classi�cation problems. We show that with appropriate regularization condition, we can achieve

the same dimensional independent generalization performance enjoyed by support vector machines.

In Section 2, the separation concept introduced in Theorem 2.2 suggests that the \margin"

concept for linear classi�ers can be extended naturally to general problems. The important feature

of this theorem is its independent of the smoothness of the loss function itself. Note that in

general, the covering numbers of the loss function depend on such smoothness characterized by

the Lipschitz condition (see Theorem 2.9). Recently in [25, 39], McAllester and Zhang studied

randomized algorithms that select posterior distributions inducing small average risks under certain

regularization conditions. The dimensional independent covering number bounds provided in this

paper explain naturally why these algorithms can give good generalization performance within the

traditional PAC analysis framework. However, the techniques used in their papers are very di�erent

from techniques employed in this paper. In particular, their results are better than results we would

obtain with a direct application of our covering number bounds to their problems.

Results provided in Section 3 illustrate that the PAC bounds are often asymptotically subop-

timal. A desirable asymptotic behavior of a learning algorithm requires the numerical stability for

solving the optimization problem (1). These numerical issues has been investigated in Section 4.

We have also demonstrated that numerical stability issue becomes very important under a small

perturbation of the system. Such stability requires a non-zero regularization parameter � and is

closely related to techniques for solving ill-posed problems in traditional numerical mathematics.

Finally, a good PAC generalization bound can be obtained only when the data and the parameter

are small. In case of nearly separable problems and small regularization parameter, this requires

that the magnitude of data kxk is clustered since if there exist some very small data, then the

optimal solution would be large as explained at the end of Section 4.3, which leads to poor PAC

bound. This implies that our theory can predict good performance only when the projection of x

onto wTx tends to be clustered around a positive point. Clearly, this is also the phenomenon we

expect if we simply try to �nd w by optimizing the degree of such clustering of wTx using the least

square regression (where we pick f(z) = (z � 1)2 and g(w) = w2).

On one hand, our theory can be used to predict good generalization performance of the least

square algorithm which has been very successfully used in the literature; on the other hand, we

seem to conclude from our theory that support-vector machine like regularization techniques will

have good performance only when the least square regression also works well (without considering

outliers). In particular, we shall not expect miracle results from support vector machine like

algorithms when the simple least square method fails. A very important feature of the least square

algorithm is that we can conceptually think it as being derived from the assumption that the
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distribution of xy is an isotropic Gaussian. Similarly, we can pose (1) as an assumption on the

distribution of xy (note we allow such distribution to be improper). Some aspects of this view

point will be explored in [38].
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