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Abstract

This paper reports a controlled study with statistical signi�-
cance tests on �ve text categorization methods: the Support
Vector Machines (SVM), a k-Nearest Neighbor (kNN) clas-
si�er, a neural network (NNet) approach, the Linear Least-
squares Fit (LLSF) mapping and a Naive Bayes (NB) classi-
�er. We focus on the robustness of these methods in dealing
with a skewed category distribution, and their performance
as function of the training-set category frequency. Our re-
sults show that SVM, kNN and LLSF signi�cantly outper-
form NNet and NB when the number of positive training
instances per category are small (less than ten), and that all
the methods perform comparably when the categories are
su�ciently common (over 300 instances).

1 Introduction

Automated text categorization (TC) is a supervised learn-
ing task, de�ned as assigning category labels (pre-de�ned)
to new documents based on the likelihood suggested by a
training set of labelled documents. It has raised open chal-
lenges for statistical learning methods, requiring empirical
examination of their e�ectiveness in solving real-world prob-
lems which are often high-dimensional, and have a skewed
category distribution over labelled documents. Topic spot-
ting for newswire stories, for example, is one the most com-
monly investigated application domains in the TC literature.
An increasing number of learning approaches have been ap-
plied, including regression models[9, 32], nearest neighbor
classi�cation[17, 29, 33, 31, 14], Bayesian probabilistic ap-
proaches [25, 16, 20, 13, 12, 18, 3], decision trees[9, 16, 20, 2,
12], inductive rule learning[1, 5, 6, 21], neural networks[28,
22], on-line learning[6, 15] and Support Vector Machines
[12].

While the rich literature provides valuable information
about individual methods, clear conclusions about cross-
method comparison have been di�cult because often the
published results are not directly comparable. For example,
one cannot tell whether the performance of NNet by Wiener
et al.[28] is statistically signi�cantly better or worse than

the performance of SVM by Joachims[12] because di�erent
data collections were used in the evaluations of those meth-
ods, and no statistical signi�cance analysis was conducted
to verify the impact of the di�erence in data on the perfor-
mance variation of these classi�ers. Naive Bayes classi�ers
have exhibited relatively poor performance in previous stud-
ies [16, 20, 12]; on the other hand, some recent papers have
claimed that NB methods \perform surprisingly well" and
are \gaining popularity lately"[13, 18, 3]. It is di�cult to un-
derstand the claimed strengths of those Naive Bayes meth-
ods because the evaluations either used non-comparable per-
formance measures, or were tested only on selected subsets
of benchmark collections (e.g., the top ten most common
categories over the total of ninety). It is not even clear
what has been claimed precisely; does \surprisingly well"
mean statistically signi�cant better than other methods, or
not statistically di�erent from the top-performing classi�ers
ever published, or worse than the best ones but still bet-
ter than the expectation of the authors? If the claims were
speci�ed, then what empirical evidence has been found so
far? These questions have not been addressed well.

Another open question for TC research is how robust
methods are in solving problems with a skewed category dis-
tribution. Since categories typically have an extremely non-
uniform distribution in practice[30], it would be meaningful
to compare the performance of di�erent classi�ers with re-
spect to category frequencies, and to measure how much
the e�ectiveness of each method depends on the amount of
data available for training. Evaluation scores of speci�c cat-
egories have been often reported[28, 5, 15, 13, 12]; however,
performance analysis as a function of the rareness of cat-
egories has been seldom seen in the TC literature. Most
commonly, methods are compared using a single score, such
as the accuracy, error rate, or averaged F1 measure(see Sec-
tion 2 for de�nition) over all category assignments to doc-
uments. A single-valued performance measure can be ei-
ther dominated by the classi�er's performance on common
categories or rare categories, depending on how the aver-
age performance is computed (e.g., \micro-averaging" ver-
sus \macro-averaging"). Nevertheless, no matter how the
performance average is computed, a single score prohibits
�ne-grained analysis with respect the training-set frequen-
cies of categories.

In this paper we address the above evaluation problems
by conducting a controlled study on �ve well-known text cat-
egorization methods: NNet, SVM, NB, kNN and LLSF. All
of these methods were published with relatively strong per-
formance scores in previous evaluations and a partial com-
parison of some of them has been made[12, 31], but they
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have not been directly compared together in a controlled
study with thorough statistical signi�cance analysis, which
is the focus of this paper. Speci�cally, this paper contains
the following new contributions:

� Provides directly comparable results of the �ve meth-
ods on the new benchmark corpus, Reuters-21578. Cur-
rently, published results of LLSF, NNet and NB on this
corpus (with the full set of categories) are not avail-
able. For kNN, published results[12, 14] are available
but are \mysteriously" lower than the results by oth-
ers on a previous version of this collection[31]. As for
SVM, the published results do not contain su�cient
details for statistical signi�cance analysis.

� Proposes a variety of statistical signi�cance tests for
di�erent standard performance measures (including F1
measures for category assignments and average pre-
cision for category ranking), and suggests a way to
jointly use these tests for cross-method comparison.

� Observes the performance of each classi�er as a func-
tion of the training-set category frequency, and an-
alyzes the robustness of classi�ers in dealing with a
skewed category distribution.

2 Task, Corpus and Performance Measures

To make our evaluation results comparable to most of the
published results in TC evaluations, we chose topic spotting
of newswire stories as the task and the Reuters-21578 cor-
pus for the data. This corpus has become a new benchmark
lately in TC evaluations, and is the re�ned version of several
older versions, namely Reuters-22173 and Reuters-21450, on
which many TC methods were evaluated[10, 16, 1, 28, 6, 33,
22, 31], but the results on the older versions may not be di-
rectly comparable to the results on the new version. For this
paper we use the ApteMod version of Reuters-21578, which
was obtained by eliminating unlabelled documents and se-
lecting the categories which have at least one document in
the training set and the test set. This process resulted in
90 categories in both the training and test sets. After elim-
inating documents which do not belong to any of these 90
categories, we obtained a training set of 7769 documents, a
test set of 3019 documents, and a vocabulary 24240 unique
words after stemming and stop word removal. The number
of categories per document is 1.3 on average. The cate-
gory distribution is skewed; the most common category has
a training-set frequency of 2877, but 82% of the categories
have less than 100 instances, and 33% of the categories have
less than 10 instances. Figure 1 shows the category distri-
bution in this training set.
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Figure 1: Category distribution in Reuters-21578 AptoMod

For evaluating the e�ectiveness of category assignments
by classi�ers to documents, we use the standard recall, pre-
cision and F1 measure. Recall is de�ned to be the ratio
of correct assignments by the system divided by the total
number of correct assignments. Precision is the ratio of cor-
rect assignments by the system divided by the total num-
ber of the system's assignments. The F1 measure, initially
introduced by van Rijsbergen[26], combines recall (r) and
precision (p) with an equal weight in the following form:

F1(r; p) =
2rp

r + p
:

These scores can be computed for the binary decisions on
each individual category �rst and then be averaged over cat-
egories. Or, they can be computed globally over all the
n�m binary decisions where n is the number of total test
documents, and m is the number of categories in consider-
ation. The former way is called macro-averaging and the
latter way is called micro-averaging. The micro-averaged F1
have been widely used in cross-method comparisons while
macro-averaged F1 was used in some cases[15]. It is under-
stood that the micro-averaged scores (recall, precision and
F1) tend to be dominated by the classi�er's performance
on common categories, and that the macro-averaged scores
are more in
uenced by the performance on rare categories.
Providing both kinds of scores is more informative than pro-
viding either alone, as we show in our evaluation and cross
method comparison (Section 5).

We also use error as an additional measure, which is
de�ned to be the ratio of wrong assignments by the system
divided by the total number of the system's assignments
(n�m).

3 Classi�ers

3.1 SVM

Support Vector Machines (SVM) is a relatively new learning
approach introduced by Vapnik in 1995 for solving two-class
pattern recognition problems[27]. It is based on the Struc-
tural Risk Minimization principle for which error-bound anal-
ysis has been theoretically motivated[27, 7]. The method is
de�ned over a vector space where the problem is to �nd a
decision surface that \best" separates the data points in two
classes. In order to de�ne the \best" separation, we need to
introduce the \margin" between two classes. Figures 2 and
3 illustrate the idea. For simplicity, we only show a case in a
two-dimensional space with linearly separable data points,
but the idea can be generalized to a high dimensional space
and to data points that are not linearly separable. A de-
cision surface in a linearly separable space is a hyperplane.
The solid lines in �gures 2 and 3 show two possible decision
surfaces, each of which correctly separates the two groups of
data. The dashed lines parallel to the solid ones show how
much one can move the decision surface without causing
misclassi�cation of the data. The distance between each set
of those parallel lines are referred to as \the margin". The
SVM problem is to �nd the decision surface that maximizes
the margin between the data points in a training set.

More precisely, the decision surface by SVM for linearly
separable space is a hyperplane which can be written as

~w � ~x� b = 0

~x is an arbitrary data point (to be classi�ed), and the vec-
tor ~w and the constant b are learned from a training set of
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Figure 2: A decision line (solid) with a smaller margin which is
the distance between the two parallel dashed lines.
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Figure 3: The decision line with the maximal margin. The data
points on the dashed lines are the Support Vectors.

linearly separable data. Letting D = f(yi; ~xi)g denote the
training set, and yi 2 f�1g be the classi�cation for ~x (+1
for being a positive example and -1 for being a negative ex-
ample of the given class), the SVM problem is to �nd ~w and
b that satis�es the following constraints

~w � ~xi � b � +1 for yi = +1 (1)

~w � ~xi � b � �1 for yi = �1 (2)

and that the vector 2-norm of ~w is minimized.
The SVM problem can be solved using quadratic pro-

gramming techniques[27, 7, 23]. The algorithms for solving
linearly separable cases can be extended for solving linearly
non-separable cases by either introducing soft margin hyper-
planes, or by mapping the original data vectors to a higher
dimensional space where the new features contains interac-
tion terms of the original features, and the data points in the
new space become linearly separable[27, 7, 23]. Relatively

e�cient implementations of SVM include the SV M light sys-
tem by Joachims[12] and the Sequential Minimal Optimiza-
tion (SMO) algorithm by Platt[24].

An interesting property of SVM is that the decision sur-
face is determined only by the data points which have ex-
actly the distance 1

k~wk from the decision plane. Those points

are called the support vectors, which are the only e�ective
elements in the training set; if all other points were re-
moved, the algorithm will learn the same decision function.
This property makes SVM theoretically unique and di�erent
from many other methods, such as kNN, LLSF, NNet and
NB where all the data points in the training set are used
to optimize the decision function. It would be interesting
to know whether or not this theoretical distinction leads to
signi�cant performance di�erences between SVM and other
methods in practice.

Joachims recently applied SVM to text categorization,
and compared its performance with other classi�cation meth-
ods using the Reuters-21578 corpus. His results show that
SVM outperformed all the other methods tested in his ex-
periments and the results published by that time1. While

1Apte et al. later published better results of a decision tree ap-
proach using boosting[2].

this comparison is quite informative, several points are miss-
ing or questionable:

� Thorough statistical signi�cance tests were lacking.

� Performance analysis with respective to category dis-
tribution, especially on rare categories, was not pro-
vided.

� The kNN result reported by him is lower than the kNN
results by others[31].

For addressing the above points, we decided to re-test
SVM using the SV M light system by Joachims2 and our own
version of kNN.

3.2 kNN

kNN stands for k-nearest neighbor classi�cation, a well-
known statistical approach which has been intensively stud-
ied in pattern recognition for over four decades[8]. kNN has
been applied to text categorization since the early stages of
the research [17, 29, 11]. It is one of the the top-performing
methods on the benchmark Reuters corpus (the 21450 ver-
sion, Apte set); the other top-performing methods include
LLSF by Yang, decision trees with boosting by Apte et al.,
and neural networks by Wiener et al. [2, 12, 14, 31, 28].

The kNN algorithm is quite simple: given a test docu-
ment, the system �nds the k nearest neighbors among the
training documents, and uses the categories of the k neigh-
bors to weight the category candidates. The similarity score
of each neighbor document to the test document is used as
the weight of the categories of the neighbor document. If
several of the k nearest neighbors share a category, then the
per-neighbor weights of that category are added together,
and the resulting weighted sum is used as the likelihood
score of that category with respect to the test document.
By sorting the scores of candidate categories, a ranked list
is obtained for the test document. By thresholding on these
scores, binary category assignments are obtained. The de-
cision rule in kNN can be written as:

y(~x; cj) =
X

~di2kNN

sim(~x; ~di)y(~di; cj)� bj

where y(~di; cj) 2 f0; 1g is the classi�cation for document ~di
with respect to category cj (y = 1 for YES, and y = 0 for

NO); sim(~x; ~di) is the similarity between the test document

~x and the training document ~di; and bj is the category-
speci�c threshold for the binary decisions. For convenience,
we use the cosine value of two vectors to measure the similar-
ity between of the two documents, although other similarity
measures are possible. The category-speci�c threshold bj
is automatically learned using a \validation set" of docu-
ments. That is, we used a subset of the training documents
(not used the test documents) to learn the optimal threshold
for each category. By optimal, we mean the threshold that
yielded the best F1 score on the validation documents.

Note that there is a di�erence between the threshold-
ing method above and the thresholding method used by
Joachims in his kNN experiment. Joachims simply sorted
the con�dence scores per test document and assigned the
top-ranking category as the correct category. This simple

2The SVM
light system is publicly available

via http://www-ai.cs.uni-dortmund.de/FORSCHUNG/
VERFAHREN/SVM LIGHT/svm light.eng.html.
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method does not allow the system to assign multiple cate-
gories to any document and is not necessarily the optimal
strategy for kNN, or any classi�er, because documents often
have more than one category[31]. We suspect this simpli�-
cation by Joachims is the reason for the low performance of
his kNN; this assertion was con�rmed by our experiments
with both versions of kNN on Reuters-21578 (see the results
in Section 5).

3.3 LLSF

LLSF stands for Linear Least Squares Fit, a mapping ap-
proach developed by Yang[32]. A multivariate regression
model is automatically learned from a training set of doc-
uments and their categories. The training data are repre-
sented in the form of input/output vector pairs where the
input vector is a document in the conventional vector space
model (consisting of words with weights), and output vec-
tor consists of categories (with binary weights) of the cor-
responding document. By solving a linear least-squares �t
on the training pairs of vectors, one can obtain a matrix of
word-category regression coe�cients:

FLS = arg min
F
kFA� Bk2

where matrices A and B present the training data (the cor-
responding columns is a pair of input/output vectors), and
matrix FLS is the solution matrix, de�ning a mapping from
an arbitrary document to a vector of weighted categories. By
sorting these category weights, a ranked list of categories is
obtained for the input document. By thresholding on these
category weights, category assignments to the input docu-
ment are obtained. Again, the system automatically learn
the optimal threshold for each category, which has the same
de�nition as in kNN.

Although LLSF and kNN di�er statistically, we have
found these two methods had similar performance in all
the applications where we compared these two methods, in-
cluding the categorization of Reuters news stories, MED-
LINE bibliographical abstracts and Mayo Clinic patient-
record diagnoses[32, 29, 31]. What we have not compared
yet is their robustness in dealing with rare categories; this
is the one of the main foci in this study.

3.4 NNet

Neural network (NNet) techniques have been intensively
studied in Arti�cial Intelligence[19]. NNet approaches to
text categorization were evaluated on the Reuters-21450 cor-
pus by Wiener et al. [28] and Ng. et al. [22], respectively.
Wiener et al. tried both a perceptron approach (without
a hidden layer) and three-layered neural networks (with a
hidden layer). Ng et al. only uses perceptrons. Both sys-
tems use a separate neural network per category, learning
a non-linear mapping from input words (or more complex
features such as singular vectors of a document space) to a
category. Wiener's experiments suggested some advantage
for combining a multiple-class NNet (for higher-level cate-
gories) and many two-class networks (for lowest-level cate-
gories), but they did not compare the performance of using
a multiple-class NNet alone to using a two-class NNet for
each category.

In our experiments with NNet on Reuters 21578, a prac-
tical consideration is the training cost. That is, training
NNet is usually much more time consuming than the other
classi�ers. It would be too costly to train one NNet per
category, we then decided to train one NNet on all the 90

categories of Reuters. In this sense, our NNet approach is
not exactly the same as the previous reported ones (we will
leave the comparison for future research). We also decided
to use a hidden layer with k nodes, where k is empirically
chosen (Section 5). We implemented our own NNet system
for e�cient handling of sparse document vectors.

3.5 NB

Naive Bayes (NB) probabilistic classi�ers are commonly stud-
ied in machine learning[19]. An increasing number of eval-
uations of NB methods on Reuters have been published[16,
20, 13, 3, 18]. The basic idea in NB approaches is to use the
joint probabilities of words and categories to estimate the
probabilities of categories given a document. The naive part
of NB methods is the assumption of word independence, i.e.,
the conditional probability of a word given a category is as-
sumed to be independent from the conditional probabilities
of other words given that category. This assumption makes
the computation of the NB classi�ers far more e�cient than
the exponential complexity of non-naive Bayes approaches
because it does not use word combinations as predictors.

There are several versions of the NB classi�ers. Recent
studies on a multinomial mixture model have reported im-
proved performance scores for this version over some other
commonly used versions of NB on several data collections,
including Reuters-21578[18, 3]. This improved model, how-
ever, was only evaluated on a few common categories (the
10 most common ones out of the total of 90 categories) of
Reuters; its results therefore do not allow a complete com-
parison to those previously reported for NB methods or
other methods on the full set of Reuters categories. An-
other confusing aspect of the recent evaluations with NB is
a non-conventional \accuracy" measure { the proportion of
the correct category assignments among the total of n as-
signments (n is the number of test documents) where each
document is assigned to one and only one category[13, 3, 18].
This narrowly de�ned \accuracy" is indeed equivalent to the
standard precision under the one-category-per-document as-
sumption on classi�ers, and also equivalent to the standard
recall assuming that each document has one and only one
correct category. It is not equivalent, however, to the stan-
dard de�nition for accuracy in text categorization literature,
which is the proportion of correct assignments among the bi-
nary decisions over all category/document pairs[26, 16]. The
standard accuracy measure is well-de�ned for documents
with multiple categories; the narrowly de�ned \accuracy"
is not. The latter leads to confusion and non-comparable
performance measures in text categorization evaluations on
several collections, contributing to the di�culty of cross-
method and/or cross-collection comparisons.

To provide comparable results of NB on Reuters-21578,
we ran the multinomial mixture model of NB by McCallum3 ,
and evaluated its output using the standard performance
measures introduced in Section 2.

4 Signi�cance Tests

We designed a set of signi�cance tests for comparing two
systems using various performance measures. We will de�ne
the tests �rst, and then discuss their suitability with respect
to the performance measures.

3The NB classi�ers by McCallum et al. are publicly available in
the Bow library at cmu via http://www.cs.cmu.edu/ mccallum/bow/.
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4.1 Micro sign test (s-test)

This is a sign test designed for comparing two systems, A
and B, based on their binary decisions on all the docu-
ment/category pairs. We use the following notation:

� N is the number of binary decisions by each system,
i.e., the product of the number of test documents and
the number of categories;

� ai 2 f0; 1g is the measure of success for system A on
the ith decision (i = 1, 2 ... N), where 1 means correct
and 0 means incorrect;

� bi 2 f0; 1g is the measure of success for system B on
the ith decision;

� n is the number of times that ai and bi di�er;

� k is the number of times that ai is larger than bi.

The null hypothesis is k = 0:5n, or k has a binomial
distribution of Bin(n; p) where p = 0:5. The alternative hy-
pothesis is that k has a binomial distribution of Bin(n; p)
where p > :5, meaning that system A is better than sys-
tem B. If n � 12 and k >= 0:5n, the P-value (1-sided)
is computed using the binomial distribution under the null
hypothesis:

P (Z � k) =

nX
i=k

�
n
i

�
� 0:5n:

Symmetrically, if n � 12 and k < 0:5n, the P-value for the
other extreme is computed using the formula

P (Z � k) =

kX
i=0

�
n
i

�
� 0:5n:

The P-value indicates the signi�cance level of the observed
evidence against the null hypothesis, i.e., system A is better
(or worse) than system B.

If n > 12, the P-value (1-sided) can be approximately
computed using the standard normal distribution for

Z =
k� 0:5n

0:5
p
n

:

4.2 Macro sign test (S-test)

This sign test is designed for comparing two systems, A and
B, using the paired F1 values for individual categories. We
use the following notation:

� M is the number of unique categories;

� ai 2 [0; 1] is the F1 score of system A on the ith cate-
gory (i = 1, 2 ... M);

� bi 2 [0; 1] is the F1 score of system B on the ith cate-
gory (i = 1, 2 ... M);

� n is the number of times that ai and bi di�er;

� k is the number of times that ai is larger than bi.

The test hypotheses and the P-value (1-sided) computa-
tion are the same as those as in the micro s-test.

4.3 Macro t-test (T-test)

This is a t-test for comparing two systems, A and B, using
the paired F1 values for individual categories. For this we
use the same notation as de�ned for S-test, and add the
following items:

� di = ai � bi is the di�erence of ai from bi;

� �d is the simple average of the di values for i = 1; 2; : : : ; n.

The null hypothesis is �d = 0. The alternative hypothesis
is �d > 0. If n � 40, the P-value is computed using the
t-distribution with the degree of freedom (d.f.) of n� 1 for

T �
�d

s:e:( �d)
;

otherwise, the standard normal distribution is used instead.

4.4 Macro t-test after rank transformation

To compare systems A and B based on the F1 values after
rank transformation[4], in which the F1 values of the two
systems on individual categories are pooled together and
sorted, then these values are replaced by the corresponding
ranks. To make a distinction from the T-test above, we refer
to this test as T'-test. We use the following the notation:

� a0i is the rank of the F1 score of system A on the ith
category (i = 1, 2 ... M);

� b0i is the rank of the F1 score of system B on the ith
category (i = 1, 2 ... M);

� d0i = a0i � b0i is the rank di�erence of a0i from b0i;

� n is the number of times that a0i 6= b0i;

� �d0 is the simple average of the d0i values for i = 1; 2; : : : ; n.

The null hypothesis is �d0 = 0. The alternative hypothesis
is �d0 > 0. If n � 40, compute the P-value (1-sided) for

T >=
�d0

s:e:( �d0)

using the t-distribution with a degree of freedom (d.f.) of
n � 1; otherwise, the standard normal distribution is used
instead.

4.5 Comparing proportions (p-test)

For the performance measures which are proportions, such
as recall, precision, error or accuracy, we compare the per-
formance scores of systems A and B as below.

� Let pa and pb be the performance scores by systems A
and B, respectively,

� Let na and nb be the numbers of trials in the two
samples that are used to evaluation systems A and B,
respectively. The de�nition of na or nb depends on the
performance measures:

{ for recall, it is the number of true YESes for
categories;

{ for precision, it is the number assigned YESes
by the system; and
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{ for accuracy or error, it is the number of document-
category pairs.

� Compute p = na�pa+nb�pb
na+nb

, the observed proportion

of the total of n = na + nb trials.

The null hypothesis is pa = pb = p. The alternative
hypothesis is pa > pb. If n � 40, compute the P-value (1-
sided) for

Z =
pa � pbp

p(1� p)(1=na + 1=nb)

using the t-distribution with a degree of freedom (d.f.) of
n � 1; otherwise, use the standard normal distribution in-
stead. The p-test allow systems A and B to be evaluated
using two di�erent test collections as well as using a same
test collection. In the case of na = nb, the computation is
simpli�ed as p = pa+pb

2
, and Z = pa�pbp

2p(1�p)=n
.

Among the testing methods described above, s-test and
p-test are designed to evaluate the performance of systems
at a micro level, i.e., based on the pooled decisions on in-
dividual document/category pairs. On the other hand, S-
test, T-test and T'-test are designed to evaluate at a macro

level, using the performance scores on each category as the
unit measure. Among these three macro tests, S-test may
be more robust for reducing the in
uence of outliers, but
risks being insensitive (or not su�ciently sensitive) in per-
formance comparison because it ignores the absolute dif-
ferences between F1 values. The T-test is sensitive to the
absolute values, but could be overly sensitive when F1 scores
are highly unstable, e.g., those for low-frequency categories.
The T'-test is a compromise between the two extremes; it
is less sensitive than T-test to outliers, but more sensitive
than the sign test because it reserve the order of distinct
F1 values. None of the tests is \perfect" for all the perfor-
mance measures, or for performance analysis with respect to
a skewed category distribution, so using them jointly instead
using one test alone would be a better choice.

In related literature, sign tests were reported by Co-
hen for method comparison based on micro-level category
assignments[5], and by Lewis et al. for a comparison based
on paired F1 values of individual categories[15].

5 Evaluation

5.1 Experiments set up

We applied statistical feature selection at a preprocessing
stage for each classi�er, using either a �2 statistic or infor-

mation gain criterion to measure the word-category associ-
ations, and the predictiveness of words (features). Di�erent
feature-set sizes were tested, and the size that optimized the
global F1 score for a classi�er was chosen for that classi�er.
As a result, we selected 1000 features for NNet, 2000 fea-
tures for NB, 2415 features for kNN and LLSF, and 10000
features for SVM.

Other empirical settings were:

� The k in kNN was set to 45. This choice was based
on our previous parameter optimization (learned from
training data) on Reuters-21450[31].

� The number of singular value used for LLSF compu-
tation was set to 500, which is also based on previous
parameter optimization (learned from training data)
on Reuters-21450[31].

� The number of hidden units in the middle layer of
NNet was set to 64. This choice produces the best
F1 score for NNet on a validation set (a part of the
training data) of Reuters-21578 when we varied the
number of the hidden units between 16, 64 and 160.

� For SVM we tested the linear and non-linear models
o�ered by SV Mlight, and obtained a slightly better
result with the linear SVM than with the non-linear
models. We use the linear version as the representative
for SVM in the cross-method comparison.

5.2 Results

Table 1 summarizes the global performance scores. Several
points in this table are worth discussion.

� The micro-averaged F1 score (.8599) of SVM is slightly
lower than the best of the SVM scores (.860-.864) re-
ported by Joachims, possibly because of a di�erence
in our term weighting scheme for document presenta-
tion, or due to minor di�erences in data preparation.
Joachims used the within-document frequency of terms
(tf) directly, while we used log(tf) instead. This dif-
ference is not signi�cant.

� Our micro-averaged F1 score (.8567) for kNN is no-
ticeably higher than the kNN score (0.823) reported
by Joachims. We also tested the simpli�ed kNN (fol-
lowing Joachims) which assign only the top-ranking
category to each document, and obtained a F1 score
of .8140. These contrasting tests suggest that this sim-
pli�cation is neither optimal nor necessary for kNN.

� Our micro-averaged F1 score (.7956) for NB is signif-
icantly higher than the NB score (0.720) obtained by
Joachims. According to the analysis by McCallum at
al.[18] who implemented both models, the multinomial

mixture modelwhich we tested is better than themulti-

variate Bernoulli model which Joachims tested. So our
experiment con�rmed McCallum's conclusion. How-
ever, the better model of NB still underperforms SVM,
KNN and LLSF.

5.3 Cross-classi�er Comparison

Table 2 summarizes the statistical signi�cance tests. Using
each column of this table, one can obtain a complete or
partial order of the classi�ers. The micro-level analysis (s-
test) on pooled binary decisions suggests that

SV M > kNN � fLLSF;NNetg � NB

where the classi�ers with insigni�cant performance di�er-
ences are grouped into one set. On the other hand, the
macro-level analyses (S-test, T-test and T'-test) on the
F1 scores suggest a somewhat di�erent grouping and order-
ing of the classi�ers:

fSV M;kNN;LLSFg � fNB;NNetg

These inconsistent grouping and orderings of classi�ers re-

ect the biases in the performance measures. The micro-
level signi�cance test is dominated by the performance of
the classi�ers on common categories, while the macro-level
signi�cance tests are more re
ective of the performance of
the classi�ers on rare categories. This does not necessarily
mean that the signi�cance tests are invalid; on the contrary,
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Table 1: Performance summary of classi�ers
method miR miP miF1 maF1 error
SVM .8120 .9137 .8599 .5251 .00365
KNN .8339 .8807 .8567 .5242 .00385
LSF .8507 .8489 .8498 .5008 .00414
NNet .7842 .8785 .8287 .3765 .00447
NB .7688 .8245 .7956 .3886 .00544
miR = micro-avg recall; miP = micro-avg prec.;
miF1 = micro-avg F1; maF1 = macro-avg F1.

Table 2: Statistical signi�cance test results
sysA sysB s-test S-test T-test T'-test
SVM kNN > � � �
SVM LLSF � � � �
kNN LLSF � � � �
SVM NNet � � � �
kNN NNet � � � �
LLSF NNet � � � �
NB kNN � � � �
NB LLSF � � � �
NB SVM � � � �
NB NNet � � � �
\�" or \�" means P-value � 0.01;
\>" or \<" means 0.01 < P-value � 0.05;
\�" means P-value > 0.05.

Table 3: p-test applied to multiple measures
sysA sysB miR miP error
SVM kNN � � �
SVM LLSF � � �
kNN LLSF < � <
SVM NNet � � �
kNN NNet � � �
LLSF NNet � � <
NB kNN � � �
NB LLSF � � �
NB SVM � � �
NB NNet � � �

it means that those di�erent tests provide complementary
analyses about the classi�ers. Moreover, one can combine
evidence from di�erent tests. For example, when the S-test,
T-test and T'-test all agree on a P-value range (e.g., �),
one can be more con�dent about the suggested signi�cance
than the case when they do not agree.

Table 3 shows additional micro-level performance anal-
ysis using p-test with multiple measures. Error-rate based
comparison leads to an ordered list of equivalent classes

fSV M;kNNg > LLSF > NNet� NB

where \>" or \�" indicates a better classi�er (with smaller
error) on the left-hand side than the one on the right-hand
side. The order among classi�ers suggested by the error-
based tests is similar to the one observed in the micro-level
sign tests, except that SVM and kNN are grouped together
here, and that LLSF and NNet are no longer grouped. P-test
on recall (miR) and precision (miP) can also be informative
when the observations are jointly used. For example, since
NB � kNN in both recall and precision, we conclude that
kNN is signi�cantly better; on the other hand, for kNN ver-
sus SVM, we cannot decide which one is better because the

p-test outcomes on recall and precision are not in agreement.
Figures 4 and 5 compare the performance curves of the

�ve classi�ers with respect to the training-set frequency of
categories. These curves are obtained by dividing the hor-
izontal axis into equal-sized intervals, averaging the per-
category F1 scores per interval for each classi�er, and inter-
polating the per-interval average scores. Figure 4 focuses on
the training set frequency in the range from 1 to 60 (cover-
ing 67% of the total unique categories), where NNet and NB
are clearly worse than the other three, but these three are
less easy to rank. Figure 5 shows the performance curves on
the full range of training-set frequencies of categories, where
the e�ectiveness of all the classi�ers are more similar to each
other on common categories (with a training-set frequency
of 300 or higher), compared to their relative performance on
rare categories.
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Figure 4: Performance curves on rare categories.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

ma
cro

-av
era

ge
d F

1

training-set frequency of category

kNN
LLSF
SVM
NNet

NB

Figure 5: Performance curves on all the categories.

6 Conclusions

In this paper we presented a controlled study with signi�-
cance analyses on �ve well-known text categorization meth-
ods. Our main conclusions are:

� Signi�cance analyses can be applied to both a micro-
level and macro-level evaluation of text categorization
systems, and jointly used for cross-method compari-
son.

� The outcome of a signi�cance test depends on the
choice of performance measure, the sensitivity of the
test, and the training-set frequency of categories being
tested.

� For the micro-level performance on pooled category
assignments, both a sign test and an error-based pro-
portion test suggest that SVM and kNN signi�cantly
outperform the other classi�ers, while NB signi�cantly
underperforms all the other classi�ers.
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� With respect to the macro-level (category-level) per-
formance analysis using F1, all the signi�cance tests
we conducted suggest that SVM, kNN and LLSF be-
long to the same class, signi�cantly outperforming NB
and NNet.
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