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ABSTRACT

Thresholding strategies in automated text categorization are
an underexplored area of research. This paper presents an
examination of the effect of thresholding strategies on the
performance of a classifier under various conditions. Using
k-Nearest Neighbor (kNN) as the classifier and five evalu-
ation benchmark collections as the testbets, three common
thresholding methods were investigated, including rank-based
thresholding (RCut), proportion-based assignments (PCut)
and score-based local optimization (SCut); in addition, new
variants of these methods are proposed to overcome signif-
icant problems in the existing approaches. Experimental
results show that the choice of thresholding strategy can sig-
nificantly influence the performance of kNN, and that the
“optimal” strategy may vary by application. SCut is poten-
tially better for fine-tuning but risks overfitting. PCut copes
better with rare categories and exhibits a smoother trade-off
in recall versus precision, but is not suitable for online deci-
sion making. RCut is most natural for online response but is
too coarse-grained for global or local optimization. RTCut,
a new method combining the strength of category ranking
and scoring, outperforms both PCut and RCut significantly.

1. INTRODUCTION

Text Categorization (TC), the problem of assigning docu-
ments to predefined categories, is an active research area in
information retrieval and machine learning. A wide range
of supervised learning algorithms have been applied to this
problem, using a training set of categorized documents to
obtain an empirical mapping from arbitrary documents to
relevant categories. This mapping is typically realized by
assigning relevance scores to every document-category pair,
and then thresholding on those scores to make binary deci-
sions. Both the scoring method and the thresholding method
used in a categorization system (“classifier”) can influence
its results significantly. However, only the scoring algo-
rithms (k-nearest neighbor, naive Bayes, multivariate regres-
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sion, decision trees, support vector machines, neural net-
works, boosting, etc.) have been the major focus of re-
search in the TC literature[16, 7, 12], while thresholding
strategies were often briefly mentioned as a unimportant
post-processing step. The implicit assumption was either
that thresholding strategies do not make much difference in
the performance of a classifier, or that finding the optimal
thresholding strategy for any given classifier is trivial.
Neither of the above assumptions is true. Optimal thresh-
olding is trivial only if the classifier produces accurate prob-
abilities P(c;|d;) for all the categories (c;) and documents
(dj), and if the optimization criterion is to minimize the
global number of errors (misses and false alarms) in the de-
cisions made by the system, and possibly some other con-
ditions. Under those conditions, for a 2-category classifi-
cation problem where a document belongs to one and only
one category, for example, the optimal threshold is trivially
P(cy|di) = 0.5 for all categories and documents. Unfortu-
nately, ideal classifiers producing true probabilities do not
exist. Many TC systems do not produce probabilistic scores,
including some state-of-the-art methods such as k-nearest
neighbor (kNN), support vector machines (SVM) and boost-
ing algorithms. Mapping from the non-probabilistic scores
generated by those learning algorithms to probabilities is an
open problem for research[11, 5] and would be at least as
hard as the T'C problem itself. Even in probabilistic frame-
works, including naive and non-naive versions of Bayesian
classification methods and probabilistic versions of kNN and
SVM, only approximations of the true probabilities are ob-
tained. Those approximations could be inaccurate due to in-
dependence assumptions among variables, limited and noisy
training examples or tractability issues. As recently ob-
served by Paul Bennett and Ghani et al. [1, 4, 19] indepen-
dently, scores generated by naive Bayesian classifiers tend
to converge exponentially to the value of zero or one when
the number of features (words from the documents) used by
the classifiers increases, yielding unrealistic estimates for the
probabilities P(c;|d;). Given the limitations of real classi-
fiers, what is the optimal thresholding over non-probabilistic
scores or inaccurate likelihood estimates? Is rank-based
thresholding more reliable than score-based? Would per-
category threshold optimization be a better choice than per-
document thresholding? Answering these questions is non-
trivial. Although some empirical observations were reported
in the TC literature for related issues[8, 16], conclusive an-
swers have not yet emerged and thorough investigations us-
ing state-of-the-art classifiers and a broader range of bench-



mark corpora for evaluation and comparison are needed to
answer these questions more explicitly. The is a part of the
motivation for this paper.

Another important reason for this investigation is the de-
mand for high-precision systems in real-world applications.
When searching the Web, for example, the user can only
afford to read the top few documents retrieved for a query,
and thus a search engine with high precision returns would
be preferred to one with a high recall but low precision.
Similarly, when a classifier is used to help the user to decide
the categories relevant to a document (for computed-aided
categorization or concept-based navigation), again only a
few candidate categories can be read by the user. A natural
and simple approach to building a high-precision classifier is
to adjust the thresholding strategy in an existing classifier.
How well this approach works is underexplored. Published
examinations in the TC literature have mainly focused on
optimizing performance in the range where recall and preci-
sion are balanced (around the “break-even-point” or where
F} is optimized), and do not focus on recall-precision trade-
off with respect to alternative thresholding strategies. !

The following sections present an examination of the effect
of thresholding strategies on the performance of a classifier
under various conditions. Using kNN as the classifier and
five corpora from various applications as testbeds, I observe
the effects of three commonly used thresholding strategies
and their new variants for improvement. While the scope
of the experimental results presented is necessarily confined
to the particular algorithm (kKNN) and the datasets, I hope
that the analysis will provide useful insights into the prob-
lem and suggest a systematic approach to the proper use
of thresholding strategies in performance optimization for
other classifiers.

2. THRESHOLDING STRATEGIES

Let us first visit the commonly used thresholding meth-
ods in the TC literature, then discuss their properties with
respect to optimizing performance of a classifier, and intro-
duce some new variants of these methods to address the
problems in the original versions.

2.1 Common Strategies

The three commonly used thresholding strategies are RCut,
PCut and SCut[8, 16]. Let m be the number of categories
in the problem, n be the number of documents in the test
(or validation) set, and assume one score is produced by the
classifier for each document-category pair. The thresholding
algorithms are then defined to be:

RCut - For each document, sort categories by score
and assign YES to each of the ¢ top-ranking categories.
RCut is parameterized by ¢ whose value (an integer
between 1 and m) can be either specified by the user or

'Recent research in the domain of Topic Detection and
Tracking (TDT) have addressed a relevant issue — the De-
cision Error Trade-off in classifiers; however, since the TDT
domain has special conditions which are not generally true in
TC (including the restriction of using 2-way classifiers only,
the one-class-per-document nature of the data, the incre-
mental changing of training and test sets, the online-decision
requirement, and so forth), those findings are beyond the
scope of this paper. Filtering is also a relevant problem but
not a focus of this paper; [ will report our experiments on
filtering in a separate paper.

automatically tuned using a validation set (not a part
of the training set or the test set). That is, the value of
t optimizing the global performance of the classifier on
the validation set is fixed when applying the classifier
on new documents in a test set. RCut is a common
approach to document filtering in TREC if the queries
are considered as categories; RCut with ¢ = 1 is also
commonly used in the machine learning community
where TC algorithms have been typically evaluated in
a subset of TC problems in which a document has one
and only one category[7].

PCut - For each category (c;), sort the test docu-
ments by score and assign a YES decision to each of the
k; top-ranking documents, where k; = P(c;) Xz X m is
the number of documents assigned to category c;, and
P(c;) is the prior probability (estimated using a train-
ing set) for an arbitrary document to be an member of
category c;. PCut is parameterized by z (real-valued),
the average number of documents the system assigns
to a category; x can be any real-valued number spec-
ified by the user: when z = n, the system behaves
like “Mr. YES”, and when x = 0, the system behaves
like “Mr. NO”. The value of z is automatically tuned
in the same fashion as tuning ¢t for RCut, by vary-
ing the value of z until the global performance of the
classifier is optimized on the validation set. PCut was
used in several published evaluations of probabilistic
classifiers, Naive Bayes, DTree, kNN and the LLSF
regression methods[8, 9, 16].

SCut — Score a validation set of documents for each
category and tune the threshold over the local pool of
scores until the optimal performance of the classifier is
obtained for that category; fix the per-category thresh-
olds when applying the classifier to new documents in
the test set. Differing from RCut and PCut in which
a single parameter (¢ or z) is used to optimize the
global performance of the classifier on average, SCut
optimizes the performance of the classifier on individ-
ual categories without guaranteeing a global optimum.
SCut was used in the evaluations of many classifiers,
including Ripper, FOIL, Winnow, EG, kNN, LLSF
and Rocchio[10, 2, 16].

2.2 Property Analysis

Which of the above threshold strategies is optimal? The
answer depends on the classifier, the optimization criterion,
and the properties of the thresholding algorithms.

e Comparability Among Scores: Considering the system-
generated scores for all the document-category pairs in
a n x m matrix. RCut compares the category scores
by fixing the document, while SCut and PCut com-
pare document scores by fixing the category. Obvi-
ously, RCut would work better then SCut or PCut if
the within-document scores are more comparable than
the the within-category scores; otherwise, it would be
worse. However, given a classifier and a data collec-
tion, 1t is often not obvious in which way the system-
generated scores are more comparable; a simple way
to tell, perhaps, is to test RCut, RCut and SCut on a
validation set and compare the results.



o Information Used: While all three thresholding strate-
gies use scores, PCut is the only one which uses the
category distribution observed in the training set to
gain a global control of the category assignments to
documents in the test set. This gives PCut additional
power, but sacrifices the ability to make decisions on-
line for test documents because the scores for the test
documents must be accumulated before PCut can be
applied. Moreover, PCut assumes that the distribu-
tion of categories over documents remains relatively
constant — this a good assumption only for certain
domains but not for others. In the domain of Topic
Detection and Tracking, for example, the distribution
of classes (topics or events) in news stories constantly
change over time.

o Suitability for Online Response: Different from PCut,
decisions by RCut on candidate categories for each test
document are independent from the decisions on other
test documents; this makes RCut suitable for online
classification or adaptive filtering. SCut is similar:
once the per-category thresholds are optimized (off-
line) on a validation set, the decisions by the classifier
for each test document are independent from the de-
cisions on other test documents.

o Suitability for Optimizing Specific Performance Mea-
sures: The per-category optimization in SCut makes
it particularly effective when macro-averaged perfor-
mance is the target function to optimize. Since cate-
gory distributions in real-world applications often ex-
hibit the Zipf’s law[18, 4], the macro-averaged per-
formance is likely to be dominated by performance of
the system on rare categories. RCut and PCut, on
the other hand, with only a single parameter (¢ or z)
to tune, will be generally less effective for optimizing
macro-averaged performance.

o Flexibility in Recall-Precision Trade-off: PCut is most
flexible, allowing the system to assign any number
(in total) of “YESes” to the test documents accord-
ing to user’s specification for the value of z, ranging
from zero (“Mr. NO”) to the maximum of m x n
(“Mr. YES”). RCut has a partial flexibility, allow-
ing the system to assign n,2n,...mn of “YESes” by
setting t = 1,2...m. SCut is more subtle: it does not
directly take any user-specified parameter to control
the number of YESes assigned by the system; instead,
the trade-off between recall and precision can be indi-
rectly adjusted by altering the optimization criterion
(e.g., F1 or Fp for any value of 3; see Section 4 for
definitions). For simplicity in this paper, I will only
include the results of SCut using Fi as the optimiza-
tion criterion.

o Risk of Owerfitting: While both SCut and PCut use
category-specific thresholds, the thresholds in SCut
are tuned to optimize the system’s performance on the
validation set, while the thresholds in PCut only de-
pend on the data (the training-set probabilities of cat-
egories). SCut is more likely to overfit than PCut, as-
suming system performance variance on different sub-
sets is generally larger than the variance in observed
category distributions over the subsets. RCut is insen-
sitive to either type of tuning.

2.3 New Variants

I propose the following modifications for RCut and SCut,

to address two problems which have not been addressed be-

fore:

3.

RTCut — RCut imposes a harsh trade-off between re-
call and precision. To smooth this trade-off, 1 have
created the RTCut scoring method. In RTCut, we as-
sign synthetic scores to the candidate categories com-
puted from both their ranks and confidence scores for
the document being classified. These synthetic scores
are computed by:

s(c|d)
maxec{s(c’|d)} +1

where d is the input document, r(c|d) is the rank of
category ¢ with respect the document, s(c|d) is the
original system-generated confidence score for assign-
ing category c to d, and f(c|d) is the new score. RT'Cut
preserves the ranked order of categories, but allows us
to distinguish between categories with the same rank.
By thresholding on f(c|d) instead of r(c|d) (the rank
of the category, e.g. RCut), fine-grained trade-offs be-
tween recall and precision can be made. As demon-
strated in section 4, RT'Cut performs very well in the
high-precision end of recall-precision space and out-
performs PCut.

fleld) = r(c|d) +

SCutFBR — When the number of training examples
for a category is small, SCut runs the risk of overfit-
ting to the training data during cross-validation and
can produce a threshold that is too high or too low. A
threshold that is too high results in many misses for
the category, which lowers the macro-average of Fi. A
threshold that is too low, on the other hand, results
in many false alarms, which lowers both micro- and
macro-average Fi, since there are potentially many
more false-alarms than misses for rare categories. To
address this problem, a simple and effective heuristic of
setting the threshold to infinity (e.g. reject everything)
is used, which minimizes the impact on micro-average
Fy at the expense of slightly lowering macro-average
Fi. As an alternative that does not hurt macro-average
F as much, the threshold is set to the score of the top-
ranked document for that category. In the rest of this
paper, I refer to the former method (fallback thresh-
old at infinity) as SCutFBR.0 and the latter (thresh-
old at top-ranked document) as SCutFBR.1. Methods
which set accurate thresholds using the limited avail-
able training data for rare categories form an impor-
tant and intriguing subject for future research.

DATA SETS

Five corpora were chosen for the experiments, allowing

observations on the regularities and variations in the effects
of thresholding strategies under different conditions.

3.1 Reuters-21578

The Reuters corpus of newswire stories is the most com-

monly used benchmark corpus in TC evaluations[16]. It
consists of over 20,000 Reuters newswire stories in the pe-
riod between 1987 to 1991. Several versions of this corpus
have been derived from the original one; For this paper I use



the ApteMod version of Reuters-21578, which was obtained
by eliminating unlabelled documents and selecting the cat-
egories which have at least one document in the training
set and one in the test set. This process resulted in 90
categories in both the training and test sets. After elimi-
nating documents which do not belong to any of these 90
categories, | obtained a training set of 7769 documents, a
test set of 3019 documents, and a vocabulary 24240 unique
words after stemming and stop word removal. The number
of categories per document is 1.3 on average.

3.2 OHSUMED-233445

The OHSUMED-233445 corpus, a subset of the original
corpus prepared by William Hersh and colleagues at the
Oregon Health Sciences University[6], is another evaluation
benchmark in TC literature[15, 16]. It consists of 233,445
abstracts (with titles) of journal articles in the medical do-
main during the years from 1987 to 1991. These articles were
assigned to 14,321 categories in the Medical Subject Head-
ings (MeSH) taxonomy; there are about about 13 categories
per document on average. For the experiments in this paper,
I arbitrarily picked the 1987 subset (36,890 documents) for
training and the 1988 subset (47,054 documents) for test-
ing; the average number of categories per document in these
subsets is 12.

3.3 TREC9-MeSH-Batch
This corpus is the TREC-9 version of OHSUMED with

a selected subset of MeSH categories, which is constructed
for the TREC-9 Filtering Track. A category was selected if
it satisfied the two conditions: 1) it had at least four rel-
evant documents in the 1987 subset (the training set) of
OHSUMED, and 2) it had at least one relevant document
in each year in the 1988-1991 subset (the test set). The re-
sulting set consists of 4,904 categories (34% of the 14,321
categories in OHSUMED-233445); all the remaining cate-
gories (i.e., rare categories, 66% of the total) were collapsed
into a giant pseudo-category (namely, the “none” category).
Such a modification of the classification scheme, essentially
ignoring the fine distinctions among a large portion of the
rare categories, made the classification task less challenging
on this corpus than on OHSUMED-233445 (see the results
in the next section). However, since it is a new benchmark in
TREC, empirical results for thresholding strategies on this
corpus will provide valuable reference for future research
even though our work in TREC-9 Filtering (which will be
reported in a separate paper) is not the focus of this paper.

3.4 HV-28 and HV-255

These two corpora, constructed by Ghani et al. at Carnegie
Mellon University[3], share the same set of documents which
are labelled using two different classification schemes. The
document set consists of 4,285 synthetic web pages each
of which corresponds to the web site of a company listed
by the Hoovers Online Web resource <www.hoovers.com>.
The collection was obtained by starting from a list of com-
pany names and home-page URLs, visiting the site for each
company and retrieving up to the first 50 Web pages (in
breadth first order). All the pages crawled for each com-
pany are concatenated to obtain a synthetic “page” for that
company. The reason for doing so was that the categories
(available at Hoover Online) classify a company’s web site,
not its individual pages. There are two sets of categories:

a coarse classification scheme of 28 classes (industry sectors
such as Oil & Gas, Sporting Goods, Computer Software &
Services) and a more fine grained classification scheme con-
sisting of 255 classes. Each web-site is classified into one
category only (for each classification scheme). The vocabu-
lary size is 256,715 unique words after removing stop words
and stemming.

For the experiments in this paper, each of the two cor-
pora was split into 5 subsets for 5-fold cross validation which
consisted of 5 iterations. In each iteration, one of the 5 sub-
sets was used for testing, and the remaining 4 subsets were
merged into one as the training set. The performance scores
were averaged over the 5 runs for a global measure. Hyper-
links and meta data about the Web sites are also available
in these corpora; experiments with using those information
are reported in a separate paper[4].

4. EXPERIMENTS

4.1 Performance Measures

To evaluate the categorization performance of kNN with
various thresholding strategies, | present the results in both
micro-averaged and macro-averaged recall, precision and F.
Recall (r) is the proportion of correctly predicted YESes by
the system among the true YESes for all the document-
category pairs given a dataset. Precision (p) is the pro-
portion of correctly predicted YESes among all the system-
predicted YESes. The F; measure[13] is the harmonic aver-
age of recall and precision, defined to be

2
Fo= 2P
p+r

A more general notion for the F-measure is

g B2+ Dpr
Bp+r
where parameter 3 is specified to adjust the relative weight-
ing between recall and precision. When scores are micro-
averaged, the binary decisions are collected in a joint pool
and then the recall, precision and F; values are computed
from that pool. When the scores were macro-averaged, the
recall, precision and Fi values for individual categories are
computed first and then averaged over categories.

It may be worth mentioning a potential confusion in com-
puting macro-averaged Fi. That is, there are two possible
ways: the “correct” way, according to our definition, is to
compute the F values for each category and then take the
average over the per-category Fi scores; the “wrong” way
is to first compute the macro-averaged recall and macro-
averaged precision, and then compute the harmonic average
of these averaged recall and precision. The two ways often
yield different results: the “correctly” computed Fi value
is often significantly lower than the “wrongly” F) value be-
cause the F value of a specific category is usually dominated
by the smaller value between the recall and precision values
for that category when these two values are radically differ-
ent.

4.2 Experimental Settings

For the experiments in this paper, I used our standard
kNN classifier for which detailed descriptions and the pa-
rameter setting process were reported in previous papers[14,



16, 18, 17]; stop word removal, stemming and statistical fea-
ture selection were applied to documents in a preprocessing
step, using the methods described in those papers as well.
All the parameters for the thresholding strategies (RCut,
PCut, SCut and RTCut) were tuned using hold-out valida-
tion sets (Section 2); the threshold increment unit was man-
ually chosen for each corpus, to obtain sufficient number
of recall-precision plots for an interpolated trade-off curve.
For SCut, both SCutFBR.0 and SCutFBR.1 settings were
examined on each corpus; for the setting with a better per-
formance in the validation condition, its performance on the
corresponding test sets was reported for SCut.

4.3 Empirical Observations

Observation 1. The choice of thresholding strategy
made significant differences.

Figures 1, 2 and 3 show the micro-averaged recall-precision
curves of kNN with RCut, PCut, SCut and RTCut applied
to three corpora?; Figures 4, 5 and 6 show the correspond-
ing curves using macro-averaged measures. Those curves
were obtained by thresholding at ¢ = 1,2,3... in RCut,
x = 0.5,1,2,3... in PCut, and appropriate incremental
thresholds in RTCut to obtain high-precision output; the
recall and precision values at each threshold were computed
and interpolated. SCut did not produce a curve, but a single
point per data set instead. The “break-even line” is drawn in
those graphs as a reference line on which recall and precision
have equal values, and around which F; scores are typically
optimized. The performance differences in micro-averaged
F) on Reuters (.85 for kNN with using SCut vs .80 for kNN
with using RCut for example) should be statistically signif-
icant, according to a related study on the same corpora[18].
The performance differences yielded by the varying thresh-
olding strategies were even larger for the OHSUMED and
HYV sets. The observations on the macro-averaged F perfor-
mance curves are consistent with the observations on micro-
averaged F curves: first, the choice of thresholding strategy
has a significant impact; second, which strategy is better
depends on the data set; third, RT'Cut consistently outper-
forms RCut on the high-precision end of the curves; and
fourth, RT'Cut consistently outperforms PCut on four out
of the six curves (except Reuters).

Observation 2. SCut tends to overfit.

SCut was the best choice for kNN on Reuters (Figures 1 and
4), and the worst choice for kNN on OHSUMED (Figures 2
and 5); as for kNN on HV-255, it was the worst choice when
micro-averaged performance was concerned (Figure 3), and
the best choice when macro-averaged performance was con-
cerned instead (Figure 6). These results are rather surpris-
ing.

2The results on the other two corpora (HV-28 and TRECO-
MeSH-Batch) are omitted due to the limited space in this

paper.
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Figure 4. kNN on Reuters-21578
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A hypothetical interpretation for the large variation in
these results is that the per-category threshold tuning in
SCut tends to overfit the validation sets and does not gener-
alize to test sets in a stable manner. Figures 7 and 8 present

some evidence for this hypothesis by comparing the F scores
(micro-averaged and macro-averaged) pairwise over the val-
idation and test sets in four corpora. The performance
degradations of KNN are indeed significant when moving
from the validation condition to the test condition. More-
over, when using macro-averaged F) instead micro-averaged
F) as the measure, the performance degradations of ANN
was even larger. Recall that the category distributions in
those corpora exhibit the Zipf’s law[18, 4], and that for such
skewed category distributions, the macro-averaged F scores
are dominated by the performance of the system on rare cat-
egories, the overfitting problem with SCut would be more
serious due to the lack of sufficient training examples for rare
categories when macro-averaged performance is the primary
concern.

Figure 7: Scut in Cross Validation -- micro-avg performance
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Observation 3. PCut performed well on rare categories

Figures 9 to 14 show the interpolated F curves of kNN cor-
responding to the thresholds in PCut and RCut; the F value
produced by SCut is shown in each figure using a dashed line
for comparison. RCut is competitive to PCut when mea-
sures were micro-averaged (Figures 9, 10 and 11); i.e., when
the performance of the system on common categories dom-
inates the global measure. On the other hand, PCut has
much better curves than RCut does when measures were
macro-averaged (Figures 12, 13 and 14); i.e., when the per-



formance of the system on rare categories dominates the
average. This suggests that the use of training-set priors of
categories in PCut is an effective scheme for controlling the
behavior of the classifier (kNN in our case) when dealing
with categories for which few training examples are avail-

able.

Observation 4. PCut’s peak performance occurs near
the threshold equal to the average number of categories
per document in the corpus.

Another interesting observation from the curves in Figures
9 to 14 is that PCut’s peak performance, for both the micro-
averaged and macro-averaged Fi curves, occurs near the
threshold where the number of system-assigned YESes to
a document is equal or close to the number of the true cat-
egories per document on average. For example, the peak
performance of PCut on Reuters is between 1 and 1.5, the
corresponding peak on OHSUMED is around 10 to 15, and
peak on HV-255 is around 1. In contrast, such a regularity
is only observed for RCut when the measures are micro-
averaged, not when the measures are macro-averaged.

Observation 5. RTCut is effective for trading recall for
precision.

The curves in Figures 15 and 16 show a nearly linear trade-
off between recall and precision, as achieved by adjusting the
thresholds in RT'Cut for most data sets. It is very interesting
and surprising that kNN can obtain good high-precision per-
formance by the simple mechanism of RTCut. This suggests

that both the cross-category ranking and cross-category scores

by the standard NN are quite comparable, which has not
been observed before. Further insights from this observation
invite future research.

Observation 6. Altering classification schemes signifi-
cantly changed the difficulty of the TC problems.

The performance curves of kNN in Figures 15 and 16 also
suggest some insights into how difficult the classification
problems are for those data collections. The tasks in Reuters
and HV-28 appear to be much easier than those in the other
data sets, at least for kNN. Note that the only difference be-
tween the HV-28 and HV-255 data sets is the classification
scheme, while the documents are exactly the same. The per-
formance degradation in kNN (with PCut or RCut) when
moving from HV-28 to HV-255 is dramatic. Similarly, it is
worth noticing that the exclusion of 66% of MeSH categories
from OHSUMED in the evaluations of TREC9-MeSH-Batch
also eased the problem considerably, as being reflected in
the macro-averagedrecall-precision curves where the perfor-
mance on rare categories dominated the average.
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Figure 9: Micro-avg F1 curves of kNN on Reuters-21578
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Figure 10: Micro-avg F1 curves of kNN on OHSUMED
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Figure 11: Micro-avg performance of kNN on HV-255
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Figure 12: Macro-avg F1 curves of kNN on Reuters-21578
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Figure 13: Macro-avg F1 curves of kNN on OHSUME
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Figure 14: Macro-avg performance of kNN on HV-255
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Figure 15: kNN with RTcut on different datasets

1 >
Pé- B
o D ers-21578 —+=
L .. HV-28-+-
; e HV-255 -&--
0.8 e HSUMED-233445
H T TREC9-MeSH -+--
c i I, break-everxline ---
k] / ™ pd S
§ 0.6 TN /*X\
o o X,
o R AN i,
> X,
© i
o 04 % . :
5] %
s o
RN X “
AL X, kS
0.2 P e gt
B e
o X
e
0 0.2 0.4 0.6 0.8 1
Micro-avg Recall
Figure 16: kNN with RTcut on different datasets
1

Reuters-21578 <=

b N HV-28- “+—
?‘% HV-255 &
0.8 (% e HSUMED-233445
. TREC9-MeSH -+--
5 umy)ﬁ%‘. . break-even-line ---
2 v
3 0.6 > %
o
o
>
¢
S 04
8 . .\
= 5. "
4 - N N
-~ L n *,
02 g y
- R
X, o
X
oLt
0 0.2 0.4 0.6 0.8 1

Macro-avg Recall

5. CONCLUDING REMARKS

This paper presented an examination of the effect of thresh-
olding strategies on the performance of a classifier under
various conditions. The experiments with kNN using RCut,
PCut, SCut and RT'Cut (a hybrid method combining cate-
gory ranking and scoring) on the five benchmark evaluation
collections showed that the choice of thresholding strategy
could indeed make a significant difference in what we would
observe when a classifier is evaluated, and that making the
right choice for real-world applications is a non-trivial issue.
These experiments also illustrated the strengths and limita-
tions for RCut, PCut, SCut and RTCut. The unstable per-
formance of SCut across applications (data sets) suggests a
tendency to overfit and a potential weakness of that method
in dealing with rare categories, or when using it in an early
stage of adaptive categorization. PCut exhibits more sta-
ble performance due to its global control using information
about category distribution in the training set, but at the



cost of not be able to make online decisions. RCut also ap-
peared to be less “risky” than SCut because of its rank-based
nature (not overly sensitive to absolute scores) and is natu-
rally suitable for online response because its decisions for a
document are independent of its decisions over other docu-
ments; its weakness is the lack of any global control (which
PCut has) and lack of free parameters for local optimization
(which SCut has), which implies less room for fine-tuning.
RTCut combines the strengths of category ranking in RCut
and category scoring in SCut in a simple fashion for an ef-
fective and promising solution to the thresholding problem.

To conclude, optimal thresholding in TC remains an im-
portant and open issue. How to jointly use the strengths
of different strategies in solving TC problems in realistic
applications is a challenge. | hope that the analysis pre-
sented will provide useful insights and suggest a systematic
approach to the understanding and proper use of threshold-
ing strategies in other classifiers and in solving new classi-
fication problems. A related area for future research is to
combine the strengths of the different thresholding strate-
gies in the context of adaptive document filtering where the
category distribution is not given in priori (thus must be
learned incrementally over time), delayed categorization de-
cisions are not allowed (so PCut cannot be used directly),
and high-precision performance in relevance feedback is cru-
cial for initiating the positive feedback loop.
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