
A Repetition Based Measure for Verification
of Text Collections and for Text Categorization

Dmitry V. Khmelev
Department of Mathematics,University of Toronto

Philological Department, Moscow State
University

dkhmelev@math.toronto.edu

William J. Teahan
School of Informatics,

University of Wales, Bangor

wjt@informatics.bangor.ac.uk

ABSTRACT
We suggest a way for locating duplicates and plagiarisms in
a text collection using an R-measure, which is the normal-
ized sum of the lengths of all suffixes of the text repeated in
other documents of the collection. The R-measure can be
effectively computed using the suffix array data structure.
Additionally, the computation procedure can be improved
to locate the sets of duplicate or plagiarised documents. We
applied the technique to several standard text collections
and found that they contained a significant number of du-
plicate and plagiarised documents. Another reformulation
of the method leads to an algorithm that can be applied to
supervised multi-class categorization. We illustrate the ap-
proach using the recently available Reuters Corpus Volume
1 (RCV1). The results show that the method outperforms
SVM at multi-class categorization, and interestingly, that
results correlate strongly with compression-based methods.

Keywords
Text categorization, text compression, language modeling,
cross-entropy

General Terms
Verification

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression; H.2.4 [Systems]: Textual databases; H.2.8
[Database Application]: Data mining; H.3.1 [Content
Analysis and Indexing]: Indexing methods

1. MOTIVATION
The number of texts in digital form increases rapidly and

tremendously. Several profound collections are now avail-
able: for example, Project Gutenberg with more than 3500

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’03, July 28–August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

documents; the Moshkov Library www.lib.ru for Russian-
language texts (3.5 Gb as of July 2002); the Reuters Corpus
Volume 1 (RCV1) (over 800K news articles); and TREC.
Text collections are used intensively in scientific research
for many purposes such as text categorization, text mining,
natural language processing, information retrieval and so on.
Every creator of a text collection is faced at some stage

with the task of verifying its contents. For example, it might
be undesirable to have duplicate documents in the collec-
tion since they can influence the text statistics, correctness
of the results obtained, consume disk space and so on. In
practice, the situation with duplicates can be even more
complicated, with plagiarised, expanded, corrected or tem-
plate documents occurring (see Sanderson [16] and examples
below in section 4.1).
We suggest a way for verifying the collection which seems

to us natural, intuitively appealing and computationally ef-
fective. More precisely, we define an R-measure which is a
number between 0 and 1 characterizing the “repeatedness”
of the document. The R-measure is a normalized sum of
lengths of all substrings of the document that are repeated
in other documents of the collection. The R-measure can be
computed effectively using the suffix array data structure.
Additionally, the computation procedure can be improved
to locate the sets of the duplicate or plagiarised documents,
and to identify “non-typical” documents, such as documents
in a foreign language (these documents can then be subse-
quently removed to ensure the collection is valid). Another
reformulation leads to an algorithm that can be applied to
supervised classification.
We stress that the suggested techniques are character-

based and do not require a-priori knowledge about the rep-
resentation of the documents, which can be, for example,
UTF-encoded Unicode symbols (but we assume, of course
that all documents are encoded in the same way) .
The structure of the paper is as follows. In the next sec-

tion we present the definition of the R-measure. We suggest
several applications in section 3, among which is supervised
classification. In section 4.1, we apply the techniques to
several text collections, and in section 4.2, we apply the su-
pervised categorization method to RCV1. We make some
concluding remarks in section 5.

2. R-MEASURE
Suppose that the collection consists of m documents, each

document being a string Ti = Ti[1.. |Ti|], where |Ti| is the
length of the string Ti. A squared R2-measure of document

104

T with respect to documents T1, . . . , Tm is defined as

R2(T | T1, . . . Tm) =
2

l(l + 1)

lX
i=1

Q(T [i..l] | T1, . . . Tm), (1)

where l = |T | is the length of document T , T [i..l] is the ith
suffix of document T and Q(S | T1, . . . , Tm) is the length
of the longest prefix of S, repeated in one of documents T1,
. . . , Tm. For example, let us take T = “cat�sat�on” with
T1 = “the�cat�on�a�mat” and T2 = “the�cat�sat”. Then

R2(T | T1, T2) =
2

10× (10 + 1)

�
(7 + 6 + 5 + 4 + 3)

+ (5 + 4 + 3 + 2 + 1)

�
≈ 0.727272 (2)

with R(T | T1, T2) =
p

R2(T | T1, T2) ≈ 0.852802. Notice
that in (2), the sum consists of two parts, (7+6+5+4+3)
from the repetition of “cat�sat” = T [1..7] and (5 + 4+ 3+
2 + 1) from “at on” = T [6..10].
In principle, we could replace the sum in (1) with the

maximum function to get the alternative L-measure, which
is the length of the longest common substring of T repeated
in T1 or T2 or . . . Tm:

L(T | T1, . . . Tm) =
1

l
max

i=1,...,l
Q(T [i..l] | T1, . . . Tm),

where l = |T |. For the example above, we have

L(T | T1, T2) =
1

10
max(7, 6, 5, 4, 3, 5, 4, 3, 2, 1) = 0.7.

However, we feel that R-measure is a more “intuitive”
measure, reflecting perhaps that a human would assign a
higher repetition rank to T than 0.7, since substrings other
than “cat�sat” = T [1..7] are also repeated. In [10], we
present several lemmas to show that the R-measure is well-
behaved in many situations. In particular, we show that
R ≥ L and the maximum value for R and L is 1.0—this will
occur when a document is completely duplicated elsewhere
in the collection.

R(T | T1, . . . , Tm) can be computed effectively using a suf-
fix array, a full-text indexing structure, introduced in [12].
It is conceptually easier to include T into the collection as
T0 = T and to compute for all j = 0, . . ., m the R-measure
for document Tj with respect to the rest of collection

R2
j = R2(Tj | Tk, k = 0, . . . , m, k �= j) =

R̄2
j

|Tj | (|Tj |+ 1)/2
,

where R̄2
j is a non-normalized repetition measure. Then,

R(T | T1, . . . , Tm) = R0. The essential idea is to build a
single string SC = T0$T1$. . . Tm$ by concatenating all doc-
uments together separated by a special sentinel symbol $
to mark each document boundary. A suffix array is then
constructed using a standard suffix array construction algo-
rithm [4]. The R̄2

j values are calculated simultaneously by
reading the suffix array sequentially and adding the lengths
of the longest common prefixes between adjacent suffixes
for the corresponding R̄2

j (see Appendix for more details).

The computation of all R2
j -values has an O(|SC |) time com-

plexity with O(|SC |)+O(m)+O(M) memory consumption,
where M = maxj=0,...,m |Tj |. This assumes that the average
length of repeated substrings is significantly less than |SC |
which is typical for text collections containing many docu-
ments. A heuristic approach based on so-called resilience,

can reduce the worst case behaviour to O(|SC |) for most
highly-repetitive SC .

3. APPLICATIONS OF R-MEASURE
Statistical estimate for R̄2

j . Notice that in a suffix
array s1, . . . , sN , constructed for SC (where N = |SC | and
SC [sj ..N] ≺ SC [sj+1..N] lexicographically for all j) all the
suffixes are mixed, in the sense that the suffix array is a
transposition of suffixes which is essentially random (this is
reflected by suffix arrays being incompressible). If all the
texts have approximately similar frequency distributions for
letters, pairs of letters etc., then notice that any sequence of
suffixes sN1 , . . . , sN2−1 where N2 −N1 ≈ αN , α > 0 should
contribute approximately αR̄2

j into the non-normalized R̄2
j .

Hence, we can introduce a statistical estimate for R̄2
j :

ˆ̄R2
j =

N

N2 − N1
R̄2

j (N1, N2), (3)

where R̄2
j (N1, N2) is computed using sN1 , . . . , sN2−1. A

proper discussion of the properties of the estimate (3), as
well as numerical evidences for its effectiveness, is beyond
the scope of this paper, but we conjecture that it can be
extremely useful, especially for applying to extra large data
sets and for the purpose of plagiarism detection of a single
document T in a large text collection.

Locating the duplicate sets: a heuristic pruning
algorithm. Duplicate documents are easily detected by
determining which have R values = 1.0. Note, however,
that the quantity R2

j above does not provide information on
which document is a duplicate of another, i.e. even if we
know that document Tj is completely repeated somewhere
else in the text collection T0, . . . , Tm, (i.e., R2

j = 1.0), ad-
ditional work is required to locate the document Ti that
contains substring Tj . A very slight addition to the algo-
rithm of computing R̄2

j can help to identify the location of
other repetitions. The idea is very simple: the list is orga-
nized with values R̄2

jk, containing contributions to R̄2
j from

suffixes of SC starting in document k.
Clearly the memory demands could be too large to keep all

R̄2
jk in memory. We suggest a heuristic to compute approxi-

mate values for the essentially large R̄2
jk. While scanning the

suffix array, a list List(j) is maintained of, say, the 10 largest
current contributors R̄2

jk to R̄2
j . For each new contribution

from suffix si to R̄2
j , we determine which document k̄ gives

the contribution and if R̄2
jk̄ exists in the List(j), we simply

increase it by the necessary value. Otherwise we add the
newly found incomplete sum R̄2

jk̄ to the List(j) and if the
size of the list is > 10, we exclude the entry with the small-
est sum R̄2

jk. After we have finished the scanning there is a
very good chance that the List(j) contains the candidates
k with largest R̄2

jk and this is born out in our experiments.
Supervised classification. Notice that there exists two

distinct types of classification. By topic categorization (the
first type of problem) one usually means assigning several
possible topics to the document. The other type of prob-
lem is called multi-class categorization, where the document
has to fall into one of several predefined classes. Of course,
these types of problems are closely related, but they are
definitely not equivalent. The first type of problem calls for
construction of a binary classifier, which distinguishes only
two classes and should be applied afterwards for each cate-
gory. The second type of problem requires construction of a

105

Collection Ref. R = 1.0 R ≥ 0.5 R ≥ 0.25
RCV1 [15] 3.4 7.9 51.1
Reuters-21578 [14] 1.6 14.2 49.5
20news-19997 [21] 5.2 7.7 47.6
20news-18828 [21] 0.03 6.5 44.3
Russian-416 [9,11] 0.0 0.0 0.0

Table 1: % of documents that pass the specified R-
measure conditions for various text collections.

multi-class classifier. R-measure can be used in this context:
if one needs to select the correct class for the the document
T among m classes represented by texts S1, . . . , Sm, we
suggest the source be guessed using the following estimate

θ̂(T) = argmaxi R(T | Si). (4)

Identifying foreign and/or non-typical documents.
Non-typical documents can be located simply by examining
those documents which have the lowest R-measures, since
they are the ones which are least repeated elsewhere in the
collection and therefore candidates for rejection during a
verification phase. Conversely, the articles with the highest
measures will represent the ones that in same way “typify”
the collection (but are also candidates for rejection because
they may be duplicated or highly plagiarised). We also sug-
gest the following method for identifying foreign language
documents. In this context, we have a predominant (usu-
ally highly domain specific) language associated with the
collection as a whole, and we are attempting to identify doc-
uments that have a different language to the predominant
one. The method is as follows. Construct several texts, one
for the language typical of the collection, SL, and several
for the target foreign languages, SF1 , SF2 , . . . , SFn , that
are anticipated to appear in the collection using text that is
a representative sample for each language. For example, to
identify the presence of French, German, Dutch and Belgian
articles in RCV1, SL is constructed from some sample of
English text (we can use English-language documents from
RCV1 for this purpose), and SF1 , . . . , SF4 are constructed
from samples of French, German, Dutch and Belgian text
respectively. The identification proceeds by using (4).

4. EXPERIMENTAL RESULTS

4.1 Analysis of various text collections
A list of R-measures was calculated for each article in

various text collections using the method described in sec-
tion 2. Table 1 lists the collections used and their references.
RCV1 is the extended Reuters corpus of over 800K news ar-
ticles. The much smaller Reuters-21578 containing 21578
news articles has been extensively used for benchmarking
purposes in many research papers on topic categorization.
20Newsgroups has also been used extensively; it has two
versions 20news-19997 and 20news-18828 based on the
number of documents it contains. This collection can be
used for multi-class categorization, since every message falls
into only one of 20 Internet newsgroups. Russian-416 com-
prises 416 texts from 102 Russian writers of the 19th and
20th centuries. It was prepared manually as an extension of
the collection of 385 texts used for authorship attribution
research using Markov Chains of letters.
Results are summarized in table 1 and plotted in figure 1

(for full lists go to http://www.informatics.bangor.ac.

0.1

1

10

100

0.001 0.01 0.1 1
R-measure

%

20 Newsgroups
18828

Reuters-21578
(ModApte)

20 Newsgroups
19997

Russian 416

RCV1

Figure 1: % of articles that exceed varying R-
measures for various text collections.

uk/~wjt/Rmeasure/). They show wide variation in the per-
centage of duplicates (where R = 1.0) from 5.2% (or 1048 ar-
ticles) for 20news-19997 down to 0.03% (or just 6 articles)
for 20news-18828 and 0 for Russian-416. Interestingly,
the latter collection is the only one not to have evidence
of significant cross-plagiarism, with the worst offender be-
ing Reuters-21578 with 14.2 % of articles exceeding the
R ≥ 0.5 threshold. We will now highlight some further
points for each collection.

Reuters-21578. This collection contains 579 duplicate
documents (or 2.7%) with R = 1.0. However, this fact by it-
self does not prejudice most of the previous results obtained
by researchers since benchmarking is carried out only over
a subset of 10794 documents which when partitioned into
a training/testing split is called the ModApte split (in fact,
we present results for this subset in Table 1). Application
of R-measure to the ModApte subset of the collection yields
177 (1.6%) documents repeated elsewhere. Two pairs of du-
plicates are shared between the training and testing splits
(12495 and 18011, 14779 and 14913), and while the topics
for 12495 and 18011 are the same, document 14779 omits the
topic “yen” assigned to 14913. This, however, does not influ-
ence most of the published results since “yen” is not among
the top 10 topics commonly experimented with. We verified
that the topics for all duplicate documents in the test part
are the same. Other researchers have already noted the pres-
ence of repeated documents (e.g., [4] noted that the presence
of long repeated documents makes the suffix array construc-
tion difficult for this collection). We are, however, the first
to highlight the existence of documents duplicated between
the training and testing splits. A careful reconsideration is
perhaps required of the absolute values of recall/precision
and F -measures that have been reported, since duplicate
documents in the test part influences the precision/recall
statistics directly, while duplicate documents in the training
part of the split influences the construction of the learning
machine (SVM etc).

20Newsgroups. This collection has no standard split so
a 10-fold or 5-fold random split with cross-validation is usu-
ally used. As noted by other researchers, 20news-19997
contains many duplicated messages (5.2%). The 20news-
18828 collection was derived from this collection with the
purpose of removing duplicates and empty messages. Our
verification shows that it still contains six documents which
are repeated in other documents. For classifiers that rely

106

on word-based feature extraction, these documents may be-
come indistinguishable; for example, comp.graphics/37261
and comp.os.ms-windows.misc/8514 differ only by an extra
new-line character. Notice that this document is assigned
two different classes, which makes its correct classification
impossible for multi-class categorization.

Russian-416. We found that only two documents have
R ≥ 0.1: R = 0.168298 for Kabak_Soch and R = 0.168265
for Kabak_Vesn. An inspection shows that these two novels
are a journal and book version of the same text with different
formatting. All other books have R < 0.01. Notice that
this level is substantially lower than for the 20Newsgroups
or Reuters collections since the average document length is
much larger (284800 characters).

Reuters Corpus Version 1. A significant proportion
of the articles in RCV1 are either exactly duplicated (3.4%
or 27,754 articles with R = 1.0) or extensively plagiarised
(7.9% with R ≥ 0.5). This makes it very difficult to en-
sure a disjoint split of the training and testing data, which
is required for meaningful evaluation. We propose the fol-
lowing way for overcoming this difficulty—all articles with
R-measures above some threshold can simply be eliminated
from both the training and testing data. In the case of R =
1.0, that leaves the remaining 97% of the collection avail-
able for use, and still leaves the possibility for researchers
to perform n-fold cross-validation unlike the ModApte split
which is fixed for the Reuters-21578 collection.
The large number of duplicates in RCV1 suggests an-

other method for verifying the collection—we can examine
whether the fields (such as topics, headlines and dates) have
been consistently assigned to each of the duplicate articles.
In an ideal world, we would expect them to be exactly or
very closely matched between duplicate articles. Some vari-
ations would be expected in the case where a category judge-
ment has been made by different human assessors possibly
at different points in time (as is the case with RCV1). A
poor match would be undesirable and would highlight prob-
lems that might require correction. We found that the per-
centage of matching fields was the following: for headlines,
56.9% matched; for dates, 78.1%; countries, 86.8%; indus-
tries, 80.1%; topics, 52.3%. The most surprising statistic
is the last one—only just over half of the duplicate arti-
cles have exactly the same topics assigned to them. The
percentage of matching headlines is also relatively low; this
however perhaps reflects the common journalistic practice
of substituting different headlines for the same story.
Although RCV1 has been designed to be a purely English-

based resource, it is known that some foreign language ar-
ticles are present in the collection. We applied the method
described in section 3 to the problem of identifying which
of the articles are non-English. Several class models were
constructed from a small sampling (100-120 Kb) of English,
French, German, Dutch and Belgian text obtained from a
popular search engine (the methodology is described in [20]).
Experiments show that good results can be achieved even
with such small training texts. The method was able to find
410 French articles, 6 Dutch, 5 Belgian and one German ar-
ticle. Checking the articles by hand and checking against
a sampling of the non-identified articles in the collection,
the language identifier algorithm was found to have 100%
precision with an estimated 98% recall. The list of foreign
language articles that was discovered is available online at
http://www.informatics.bangor.ac.uk/~wjt/Rmeasure/.

An examination of the documents with the lowest R-
measures also highlights some further difficulties with RCV1.
We found that nearly 40% of the 50 lowest scoring articles
consist almost entirely of names and numbers (for exam-
ple, sporting results from various world championships; and
the two lowest scoring articles, 555295 and 555363, a seat-
by-seat breakdown of Britain’s general election). Although
most of these articles are not necessarily candidates for re-
jection, several others do appear to be “undesirable”, one
article consisting almost entirely of numbers (385090) and
another (385382) with a large section (2400 bytes) all in
upper case. A further observation is that the articles are
quite long for RCV1 (on average over 21,000 characters).
This effect is related to the normalizing of R2-measure by
the squared length of the document in (1), which essentially
decreases R-measure for long non-typical documents.

4.2 Multi-class categorization
We also investigated how well the R-measure performs

at authorship attribution on the RCV1 data set. Author-
ship attribution (a multi-class categorization problem, see
section 3) is an important application with many poten-
tial benefits for Information Retrieval—for example, for user
modeling, determining context, a more efficient partitioning
of the collection for distributed retrieval, and so on. The
RCV1 collection is not primarily intended for this purpose—
however, many of the articles have “bylines” assigned to
them which enables us to perform authorship experiments
using a much larger number of authors and larger amounts
of text than is available in other authorship data sets.
Our research [19, 9, 11] has shown that using a relative-

entropy based approach can be very competitive for author-
ship, language identification and topic categorization com-
pared to other well-performed methods such as SVM. In
fact, it was while conducting these experiments with RCV1
that we discovered the extent of the duplicate/plagiarism
problems with this collection and we consequently developed
the R-measure to overcome these difficulties. Perversely, we
found we could also apply the measure to the same task we
were investigating by using formula (4) with some interest-
ing results as illustrated by Table 2. This table compares
several approaches which proved to be effective in past ex-
periments. Let us describe the experimental setting first and
the methods used afterwards.

Experimental setting. An experimental collection was
formed from 1813 articles of the top 50 authors with respect
to total size of articles (notice that this set of authors differs
from the top 50 authors with the largest number of articles).
Each column in Table 2 corresponds to experiments carried
out over the subsets of articles of these 50 authors, satis-
fying conditions for R-measure presented in the following
list: condition (number of articles), R < 0.25 (873) R < 0.5
(1161) R < 0.75 (1255) R < 1.0 (1316) R ≤ 1.0 (1813).
For each subset we performed a random 10-fold split. Af-
terwards, 9 of the 10 parts were used for training and the
remaining part was used for testing. The figures presented
in the table are the percentage of correct guesses at first rank
of the methods used. A description of each of the methods
now follows.

R-measure. The first line in Table 2 is occupied by re-
sults obtained using formula (4).

Multi-class SVM. The well-known panacea in classifi-
cation is SVM, which is a binary classifier. There are sev-

107

Method R < 0.25 R < 0.5 R < 0.75 R < 1.00 R ≤ 1.0
R-measure 82.1 86.4 87.1 87.8 89.0
Multi-SVM 80.6 83.4 83.5 84.6 85.0
Bzip2 56.9 55.2 45.9 51.9 48.2
Gzip 55.7 53.5 53.9 50.1 59.4
Markov Chains, order 1 62.3 64.6 63.2 64.3 66.1
Markov Chains, order 2 60.9 64.4 61.8 64.7 64.5
Markov Chains, order 3 48.6 60.3 59.3 61.7 63.3
RAR 84.3 86.9 87.3 88.5 89.4
PPMD, order 2 77.8 79.1 79.4 80.5 81.3
PPMD, order 3 80.6 82.3 84.0 85.0 86.4
PPMD, order 4 82.5 85.4 86.0 87.7 88.4
PPMD, order 5 82.2 86.1 86.3 88.8 89.2

Table 2: How well the R-measure performs at determining the top 50 authors in RCV1 compared to SVM
and compression-based methods. Results are percentage of correct guesses at first rank for documents in the
collection that satisfy the specified R-measure conditions.

eral approaches to reducing multi-class categorization prob-
lems to multiple binary categorization problems [1, 3, 22].
We have chosen the simplest one-vs-rest [22] SVM approach
here. Feature selection was done in several steps: 1) the
input text was split into “words”, where the “word” is the
sequence of digits or letters, the rest of the file being ignored;
2) all digits are replaced with *; 3) all words are down-cased;
4) the Perl implementation by its author of the Porter stem-
mer algorithm is applied [13]; 5) features with frequency less
than 2 are dropped; 6) each feature’s document frequency
df is replaced with log(1 + df/S), where S is the sum of
all feature frequencies remaining to this step; 7) the vector
obtained is normalized with its 2-norm. The log transforma-
tion 6) is motivated by paper [5] where authorship attribu-
tions with SVM was studied from within a binary classifica-
tion setting, and this was found to improve the performance
by 0.5–1%. Afterwards 50 one-vs-rest SVMs were built for
each author using the SVMlight program by T.Joachims [8],
and the classification was based on the maximal output of
vector machines on the defined author.

Entropy-based methods. The rest of the table is occu-
pied with several methods which use relative entropy meth-
ods for classification. The main idea is that to guess the
correct author of the text T one uses the formula

θ̂(T) = argmini H(T | Si), (5)

where H(T | S) is some approximation to the relative en-
tropy of text T with respect to text S. Notice the similarity
between (5) and (4).
The classical Shannon’s definition of entropy is given in

terms of Markov chains of large order [17]. This leads to the
direct estimate of relative entropy using a Markov chain of
some order k on the letters of the text S as a model for the
source. The transition probabilities for Markov Chains are
estimated from S, and HMC(T | S) is defined to be the prop-
erly normalized logarithm of the probability of the text T
with respect to estimated probabilities from S [9, 11]. This
estimate works well for texts of large size, but for shorter
texts it is useful to combine the probabilities of symbols of
text T using Markov Chains of several orders. One way of
doing this is to use the PPM compression scheme [19, 20].
This provides us with the estimate HPPM(T | S), which
is a properly normalized length of the compressed text T
when we use a PPM model to compress S. The informatic-

theoretic definition of entropy by Kolmogorov motivates the
use of compression programs for estimating entropy. This
naturally leads to the idea of applying off-the-shelf algo-
rithms to estimate the entropy. More precisely, let us take
some compressor COMP and let CCOMP (S) be the length
of the compressed text S. Then we define HCOMP (T |
S) as the properly normalized difference (CCOMP (ST) −
CCOMP (S))/ |T |, where ST is concatenation of texts S and
T (see appendix by D.Khmelev to [11]).
Table 2 contains results of the application of estimate (5)

using off-the-shelf algorithms for HBzip2, HGzip, and HRAR,
where Bzip2 is a public domain program by J.Seward, us-
ing the Burrows-Wheeler transform, Gzip is a public do-
main LZ77 compressor and RAR is a shareware program by
E.Roshal (http://www.rarlabs.com) which implements the
PPMII compression method (a variant of PPM) by D.Shka-
rin [18]. We also present results for HMC with order 1, 2,
and 3 and results for HPPMD with maximal order 2, 3, 4
and 5 using PPMD (another variant of PPM).
Let us suggest some explanation for the results in Table 2.

One can see that the classification performance of good al-
gorithms essentially decreases as we decrease the R-measure
threshold. This reflects our opinion that authorship attribu-
tion is possible because authors tend to repeat themselves.
The bad performance of simple Markov Chains is probably
due to RCV1 articles being too short (2000–5000 characters)
to yield good statistics, and the good performance of PPM
shows that combining Markov Chains of different orders in-
deed improves results significantly. The bad performance of
Gzip is probably explained by the short buffer it uses for
compression and by the slow convergence of LZ77 to the
real entropy of the sequence. The performance of Bzip2 is
certainly influenced by its non-sequential block-sorting na-
ture. The performance of RAR is comparable to those of
PPMD, order 5. This is not so surprising since RAR uses a
modification of the PPM.
The lower performance of SVM compared to the R-mea-

sure classifier, RAR and PPMD5, is explained (in our opin-
ion) by SVM ignoring the relationship between words in the
text. Moreover, we believe that any additional text pro-
cessing would decrease performance, i.e., the text should be
considered as a whole and not segmented into “words” as
is done with SVM. More complicated techniques that im-
prove the one-vs-rest approach using Error Correction Out-

108

put Codes (ECOC, [1]) might make SVM more competi-
tive. However we believe we have shown that our straight-
forward character-based approach using R-measure, RAR or
PPMD5, is impressive nonetheless.
The most striking conclusion is that the results for the R-

measure classifier mirror results for RAR and PPMD5. It is
well-known that PPM-type algorithms provide a very good
estimate for the entropy of the text [19]. We conjecture that
there exists an approximate relationship like R ≈ C/(C+H)
between R(T |S) and H(T |S) for small |T | / |S|. The pres-
ence of such a relationship would explain the correspondence
in classification results. Another corollary of the conjecture
is that one gets a simple measure for similarity which is
equivalent to entropy, a not so intuitive notion.

5. DISCUSSION
In this paper, we have highlighted the need for verify-

ing a text collection—that is, ensuring that the collection is
both valid and consistent (for example: a disjoint splitting
of training and testing data is correct or easily produced;
categories have been consistently assigned across duplicate
documents; and undesirable foreign and non-typical docu-
ments have been eliminated).
We suggested a number of methods for collection verifica-

tion using R-measure, the normalized sum of the lengths of
all suffixes of the text repeated in other documents in the
collection, which can be computed effectively using the suf-
fix array data structure. The first method is based on the
straightforward use of R-measure for locating duplicates and
plagiarisms in the collection. The second method uses the
multi-class categorization application of R-measure to lo-
cate foreign and non-typical documents with a high degree
of precision/recall. The final method relies on the presence
of a large number of duplicate articles—a simple check of
these articles can be undertaken to determine if the fields
and categories consistently match.
We applied the methods to the recently available Reuters

Corpus Volume 1 (RCV1). Experiments show that over 3%
of the collection is exactly duplicated elsewhere, and that
many of the articles are significantly plagiarised. The impli-
cation for text categorization research is that a more careful
approach is required to split the collection into training and
test sets than a random or even chronological ordering. In
section 4.1, we propose such an approach based on the cal-
culated R-measures for the collection. Analysis with the
collection shows that a small but significant number of ar-
ticles (over 400) are non-English—these should be removed
before using the collection for natural language processing.
We have made available for other researchers the list of
non-English and duplicate article numbers and computed
R-measures—for the URLs, see section 4.1.
Further analysis of the duplicate articles in RCV1 shows

that the classification made by humans is highly inconsis-
tent. It was found that only just over half of the duplicate
documents had the same topics assigned to them. This has
several major implications for our studies. Firstly, such an
error rate shows that the poor compression-based perfor-
mance for topic categorization outlined by Frank et al. [7] is
probably the corollary of erroneous classification of articles
by people, violating the main assumption used by compres-
sors: that a text comes from an ergodic source. Secondly,
there exists a class of problems which is more suitable for
the R-measure and PPM approach than for SVM, such as

the classification of texts coming from a single source, like
the papers written by a single author or in a single language.
In cases where the classification depends on the presence of
one or two words (as for Reuters-21578), SVM would be the
preferred method. However, this might provide further ev-
idence that the split of documents into categories for the
Reuters collections is not natural as humans themselves are
often puzzled by which is the correct classification of the
document.

6. REFERENCES
[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing

multiclass to binary: A unifying approach for margin
classifiers. In Proc. 17th International Conf. on Machine
Learning, pages 9–16. Morgan Kaufmann, San Francisco,
CA, 2000.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, Digital
SRC, Palo Alto, 1994.

[3] K. Crammer and Y. Singer. On the learnability and design
of output codes for multiclass problems. In Computational
Learning Theory, pages 35–46, 2000.

[4] A. Crauser and P. Ferragina. A theoretical and
experimental study on the construction of suffix arrays in
external memory. Algorithmica, 32(1):1–35, 2002.

[5] J. Diederich, J. Kindermann, E. Leopold, and G. Paass.
Authorship attribution with support vector machines.

[6] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In 41st Ann. Symp. on
Found. of Comput. Sc., pages 390–398. IEEE Comput.
Soc. Press, Los Alamitos, CA, 2000.

[7] E. Frank, C. Chui, and I. H. Witten. Text categorization
using compression models. In Proceedings of DCC-00,
IEEE DCC, pages 200–209, Snowbird, US, 2000. IEEE
Computer Society Press.

[8] T. Joachims. Learning to Classify Text Using Support
Vector Machines. Kluwer, New Jersey, 2002.

[9] D. Khmelev. Disputed Authorship Resolution through
Using Relative Empirical Entropy for Markov Chains of
Letters in Human Language Text. J. of Quantitative
Linguistics, 7(3):201–207, 2000.

[10] D. V. Khmelev and W. J. Teahan. Verification of text
collections for text categorization and natural language
processing. Technical Report AIIA 03.1, School of
Informatics, Univ. of Wales, Bangor, 2003.

[11] O. Kukushkina, A. Polikarpov, and D. Khmelev. Using
Letters and Grammatical Statistics for Authorship
Attribution. Problems of Information Transmission,
37(2):172–184, 2001.

[12] U. Manber and G. Myers. Suffix arrays: a new method for
on-line string searches. SIAM J. Comput., 22(5):935–948,
1993.

[13] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[14] Reuters-21578 Text Categorization Collection. Available at
http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html.

[15] T. Rose, M. Stevenson, and M. Whitehead. The Reuters
Corpus Volume 1—from yesterday’s news to tomorrow’s
language resources. In Proceedings of the Third
International Conference on Language Resources and
Evaluation, pages 29–31, Las Palmas de Gran Canaris,
2002. IEEE Computer Society Press.

[16] M. Sanderson. Duplicate detection in the Reuters
collection. Technical report, Department of Computer
Science, Univ. of Glasgow, 1997.

[17] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379–423,623–656,1948,
1948.

[18] D. Shkarin. Improving the efficiency of the PPM algorithm.

109

Problems of Information Transmission, 37(3):226–235,
2001.

[19] W. J. Teahan. Text classification and segmentation using
minimum cross-entropy. In Proc. RIAO’2000, volume 2,
pages 943–961, Paris, France, 2000.

[20] W. J. Teahan and D. J. Harper. Using compression- based
language models for text categorization. In Workshop on
Lang. Modeling and Inform. Retrieval, pages 83–88,
Carnegie Mellon Univ., May 2001.

[21] The 20 Newsgroups data set. Available at
http://www.ai.mit.edu/people/jrennie/20Newsgroups/.

[22] J. Weston and C. Watkins. Multi-class support vector
machines, 1998.

APPENDIX
We shall now describe how to compute R-measure for all
documents in collection T0, . . . , Tm in more detail than in
section 2. Suppose for simplicity that all documents T0, . . .,
Tm are non-empty. Let us introduce sentinel symbols $0, $1,
. . . , $m, such that $i when sorted lexicographically preceeds
any letter in T0, . . . , Tm. Also we require them to satisfy
the precedence relation

$0 ≺ $1 ≺ · · · ≺ $m.

Consider the document

S = T0$0T1$1 . . . Tm$m

and let N = |T0|+ · · ·+ |Tm| and N̄ = |S| = N + m + 1. A
suffix array for S is defined to be a sequence of integers s1,
. . . , sN , which form the set {1, . . . , N̄} \ {k | S[k] = $j for
some j = 0, . . . , m} and satisfy lexicographic order

S[sj ..N̄] ≺ S[sj+1..N̄] for j = 1, . . . , N − 1.

Such an order of indexes ensures that if Ti and Tj share the
common suffixes sl and sm, then l < m for i < j. For a
practical realization of the algorithm it is useful to define
Label(s) of the suffix S[s..N̄] to be equal to j if the prefix
of S[s..N̄] coincides with a suffix of Tj$j . More formally

Label(s) = j if S[s..N̄] = Tj [k.. |Tj |]$jTj+1$j+1 . . . Tm$m

for some k. Let us now define

Prev(i) = max{k | k < i,Label(sk) �= Label(si)},
Next(i) = max{k | k > i,Label(sk) �= Label(si)},

which can be undefined for certain i, but for each i given
either Prev(i) or Next(i) is well-defined. One can easily
verify that the following identity for R̄2

j holds; this identity

can be used directly to calculate R2
j from the formula given

in section 2:

R̄2
j =

NX
i=1

1{Label(i)=j}max(Lcp(si, sPrev(i)),Lcp(si, sNext(i))),

where Lcp(s, t) is the Longest Common Prefix of S[s..N̄]
and S[t..N̄] if s, and t are well-defined and Lcp(s, t) = 0
if either of s and t are not well-defined; 1{Label(i)=j} is 1 if
Label(i) = j and 1{Label(i)=j} is 0 otherwise.
Let us now highlight several aspects of the practical real-

ization. First, there is no need for different sentinel symbols
$i, which can be replaced with a single sentinel symbol $
(which can be the character ’\000’). This can be accom-
plished quite easily with minor modifications to a function
comparing suffixes (for example, in the C programming lan-
guage, one can call strcmp(s, t) directly to compare suffixes

S[s..N̄] and S[t..N̄], and in the case of equality, one simply
needs to return the result of the comparision of s and t).
Second, a naive approach can be used to construct the

suffix array s1, . . . , sN , especially if one has sufficient in-
ternal memory (and we assume from now on that this is
the case). Nowadays, RAM modules are rather inexpensive
(personal computers can now be upgraded to 2 or 4 Gb)
and most of the text collections can fit into the available
internal memory directly (the recently available RCV1 text,
for example, with XML tags removed, consumes just over
1.1 Gb). Keeping the whole collection S in the memory, we
can construct the suffix array in pieces by naive Quicksort
and merge them afterwards (counting sort for sorting on the
first few letters can also be used for initial sort of suffixes).
This algorithm exhibits O(LN2) worst case behavior and
O(LN logN) average time behaviour, where L is the aver-
age Lcp of the collection. In practice, the construction of a
suffix array for the 1.1Gb collection RCV1 (which we saw as
containing a significant number of duplicates) requires 3-4
hours on an UltraSparc III computer using 2 Gb of memory.
Third, assuming that collection S fits in memory, in or-

der to compute R̄2
j we can simply read the suffix array s1,

. . . , sN sequentially to compute R̄2
j . The only catch here

is that in order to deal with Prev and Next indexes with
different labels we should maintain a stack of subsequent
suffixes with coinciding labels. If the next suffix has a label
different from the one on the top of the stack (j, say), the
stack can be emptied contributing the Lcp’s to R̄2

j . This
process is extremely effective since one takes advantage of
long sequential reads from the hard disk, which are much
more effective than random access reads. In the worst case,
the stack requires M = max(|T0| , . . . , |Tm|) memory cells,
but on average, only a few of them are used. The time com-
plexity for computing R̄2

j is usually significantly less than the
time required for naive suffix array construction as described
above. For example, processing of RCV1 requires less than
hour on UltraSparc III computer using 1.5 Gb of memory.
If computation takes too long, one is better to stop it and
detect the long duplicated documents using estimate (3).
Finally, if the text collection does not fit into RAM, one

can split it into several parts, say, A, B, C and apply the
technique described to pairs AB, BC and AC. This still
allows one to identify duplicated and essentially plagiarized
articles. Of course, there is a trade-off between memory and
time complexity, but given the memory resources currently
available, it is possible to verify in reasonable time a great
percentage of the existing text collections.
As one can see, the method for computing R-measure is

straightforward and easy to program. We provide programs
for computing R-measure at the same URLs given in sec-
tion 4.1. The interested reader is redirected to [10] for fur-
ther details.
At the end we wish to discuss the method for storage of

suffix array. It is well-known [2] that text can be stored
using its Burrows-Wheeler transform (BWT), which can be
further compressed, up to 0.25 of the size of the source (nat-
ural language) text. Interestingly, the suffix array of the text
can also be easily restored from BWT. Together with recent
results on the possibility of search inside compressed BWT
text [6], our results on R-measure classification performance
open an interesting way for keeping text collections using a
compressed BWT representation with preserving the possi-
bility for search and classification.

110

