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ABSTRACT 
A novel maximal figure-of-merit (MFoM) learning approach to 
text categorization is proposed. Different from the conventional 
techniques, the proposed MFoM method attempts to integrate any 
performance metric of interest (e.g. accuracy, recall, precision, or 
F1 measure) into the design of any classifier. The corresponding 
classifier parameters are learned by optimizing an overall 
objective function of interest. To solve this highly nonlinear 
optimization problem, we use a generalized probabilistic descent 
algorithm. The MFoM learning framework is evaluated on the 
Reuters-21578 task with LSI-based feature extraction and a binary 
tree classifier. Experimental results indicate that the MFoM 
classifier gives improved F1 and enhanced robustness over the 
conventional one. It also outperforms the popular SVM method in 
micro-averaging F1. Other extensions to design discriminative 
multiple-category MFoM classifiers for application scenarios with 
new performance metrics could be envisioned too. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.5.2 [Pattern Recognition]: Design Methodology 

General Terms 
Algorithms, Performance, Experimentation, Theory 

Keywords: Text categorization, maximal figure-of-merit, 
generalized probabilistic descent method, latent semantic 
indexing, support vector machines, decision tree 

1. INTRODUCTION 
Text categorization (TC) is a process of classifying a text 
document into some pre-defined categories. It is an important 
research problem in information retrieval (IR), information 
extraction and filtering and natural language processing. In the 
past two decades TC has received much attention [32]. A number 
of machine learning approaches to TC have been proposed. They 

are Bayesian method [20,23,25], k-nearest neighbors (kNN) 
[24,36,37], Rocchio algorithm [5,12], artificial neural networks 
(ANN) [10,22,27,29,31], support vector machines (SVM) 
[6,13,14], boosting [30], decision tree (DT) [3,4,10,20,28,33], and 
hidden Markov model (HMM) [8,26]. Some are based on widely 
available software packages, such as C4.51, CART2, and SVM3. 

Most of these methods aim at learning parameters of a joint 
distribution, P(X,C), between the observed feature, X, of a 
document and its corresponding category, C. It is well known that 
if P(X,C) is specified exactly, an optimal classifier can be 
designed to minimize the Bayes risk (e.g. [18]). Unfortunately, for 
most real-world problems, the exact form of the joint distribution 
is usually unavailable. Even we are lucky to be given the 
distribution form, the parameters of the joint distribution would 
still have to be estimated from a labeled training set. To reduce 
the complexity of the design, P(X,C) is usually decomposed into 
two learning components, P(X|C) and P(C), known as the 
conditional class and prior class distributions, respectively. In 
most pattern recognition scenarios, the latter is often assumed to 
be equally probable and ignored [20,23,25]. The former is 
assumed to be a distribution with a known form, e.g. mixture 
Gaussian densities in HMM [19], multinomial density in naïve 
Bayes [20,23,25], etc. Maximum likelihood (ML) techniques are 
then used to estimate the parameters. When the actual training and 
testing data do not support this assumption, the system 
performance is degraded. To overcome this mismatch for any 
given classifier with any density, minimum classification error 
(MCE) techniques [15,16,17,18] were proposed to directly 
minimize the empirical error of the training set.  A family of 
generalized probabilistic descent (GPD) [16] algorithms was used 
to solve for the parameters in an iterative manner. The MCE 
framework has been successfully adopted in speech and speaker 
recognition and related problems [15,16]. Recently it was 
extended to vector-based call routing [17]. Other learning 
approaches, such as ANN, SVM, etc., are based on some error 
related criteria, such as minimum least-mean-square in ANN, and 
structural risk minimization principle in SVM. 

For TC, the conventional techniques do not directly train the 
parameters of the corresponding classifier based on the criterion 
of maximizing a real performance metric, such as recall, 

                                                                 
1 http://www.cse.unsw.edu.au/~quinlan/ 
2 http://www.salford-systems.com/ 
3 http://www.ece.umn.edu/groups/ece8591/software/svm.html 
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precision, or F1 measure. Furthermore, it becomes flexible for 
most researchers if appropriate metrics could be chosen for 
different tasks and a system could then be designed accordingly. 

In this paper we propose a novel Maximal Figure-of-Merit 
(MFoM) approach that has a consistent learning objective with the 
evaluation metrics of a given application. The difficulty in such a 
formulation lies in computing discrete quantities, such as recall, 
precision and F1, because they are not differentiable functions of 
the parameters and therefore could not be easily optimized. In the 
proposed framework, we design a training objective that directly 
relates the classifier parameters to the performance metric of 
interest through a smooth approximation of the errors and related 
metrics that could be optimized directly.  

The remainder of the paper is organized as follows. Section 2 
discusses TC work related to this study. Section 3 describes 
document feature extraction based on latent semantic indexing 
(LSI). Section 4 introduces theory of the MFoM learning 
approach. Section 5 lays out the iterative GPD algorithm. 
Experimental results based on the Reuters-21578 task are then 
presented in Section 6. Finally we summarize our findings in 
Section 7. 

2. RELATED WORK IN TC 
A good tutorial on the state-of-the-art of TC techniques can be 
found in [32].  For work relevant to this study we focus more 
discussion on decision trees [3,4,10,28,33] and SVM [6,13,14] 
because binary tree classifiers are our baseline classifiers and 
SVM is the target classifier with which we compare our proposed 
MFoM-based approaches. Details on other machine learning 
techniques for text categorization have also been documented  
[8,20,21,22,23,24,25,26,27,30,37]. 
2.1 Decision Tree (DT) 
Given a set of labeled training samples each of which is 
represented by a feature vector (the vector component could either 
be a numeric or symbolic value), a regression tree could be 
constructed by recursive partitioning of samples that belong to a 
tree node. At each node, a decision rule that minimizes an 
impurity function is chosen to partition the training samples. To 
avoid over-fitting, tree pruning is needed. Cross-validation can 
also be applied if necessary. The decision rule at each node can 
either be a non-parametric or parametric model. A non-parametric 
rule could be a statement, like “if feature X < 5.0?” or 
“Y==male?”. A parametric example could be a linear 
discriminatnt function [4,33], a neural network [10], the Rocchio 
algorithm or Naïve Bayesian [35]. Some DT tools, such as CART, 
ID3 and C4.5, have been widely adopted [3,28] for TC 
applications. 
2.2 Binary Tree Classifier 
TC is often solved by designing a set of N binary classifiers, each 
only determines if a document is relevant to a specific category. 
Each binary classifier is trained from a category-based training 
set, which is obtained by re-labeling each document in the training 
corpus T with either the positive class, C+, if it is relevant to the 
category, or the negative class, C-, if irrelevant. Figure 1 shows an 
example. Each node, except the root, is given a relevance label 
(positive or negative). All training samples that enter into it are 
classified according to the node label. Recursive splitting is then 
performed to build the tree node-by-node.  

For each node a decision rule needs to be defined. In this study we 
use a linear discriminant function (LDF) that can be learned from 
these samples corresponding to the node. For a feature vector X, 
we define the LDF as  

 ( ) 0
1

, wxwXWf
R

k
kk −= ∑

=
   (2.1) 

where R  is the feature dimension, W is the weight vector, and   
Rix i L,2,1( = ) is the i-th component of X. 

 
Figure 1. A binary tree classifier 

In order to split a set of samples into two child nodes, called Yes 
node labeled by the positive class (left branch of a node in Figure 
1) and No node labeled by the negative (right branch of a node in 
Figure 1), a decision rule is applied. For any document with 
feature, X , if ( ) 0, >XWf , it is assigned into the Yes node (C+). 
Otherwise, it is assigned into the No node (C-). The optimal 
parameters W are learned using a number of algorithms to be 
discussed later. The above procedure is run recursively until there 
are no more nodes left to be split. At this point a binary tree 
classifier is finally established. 

In testing for a given document with feature X, the learned tree 
classifier assigns it as either positive or negative. The process 
starts from the root. If ( ) 0, >XWf , it enters the Yes node (left 
branch). Otherwise, it enters the No node. It continues until a leaf 
is reached, the label at the leaf is then assigned to the document. 
2.3 Support Vector Machine (SVM) 
The support vector machine learning framework was first 
proposed to solve the two-class classification problem by Vapnik 
in 1979 (in Russian). The decision function is defined as 

( ) K,1,k  ,1, L=≥kk XWfz , where 1=kz  stands for positive 
and 1−=kz for negative cases, W is the parameters to be 
estimated, kX is the k-th sample vector, and K is the total number 
of the training samples. 

SVM tries to find a decision surface that can maximally separate 
two classes based on the structural risk minimization principle 
[34]. Similar to the binary tree classifier discussed above with 
LDF, a linear decision function, ( ) bXWXWf kk −⋅=, , is used in 
the case of linear SVM. The parameter vector, W, could be 
estimated by minimizing 2W subject to the constraint, 

1)( ≥−⋅ bXWz kk , k∀ . 

C- (Negative) C+(Positive)

Root 

Leaf 
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Joachims [13,14] applied SVM to TC. His experimental results 
showed that SVM outperformed most existing TC classifiers, such 
as Naïve Bayesian, Rocchio algorithm, C4.5, and k-NN. 

3. LSI-BASED FEATURE EXTRACTION 
In IR, a document is often represented by a feature vector with the 
dimension equal to the size of the lexicon. Each component of the 
feature vector corresponds to the contribution of a term occurred 
in the document. In a typical application the lexicon usually has 
more than ten thousand entries. Many techniques, such as feature 
selection [32], have been proposed to reduce the dimension. 
Latent semantic indexing (LSI) [1] is a way to achieve both 
feature extraction and reduction. Probabilistic LSI (PLSI) [11] has 
also been used. In this study, singular value decomposition (SVD) 
based LSI is used to get a lower dimension than the original one 
by decomposing the term-document matrix H into a multiplication 
of three matrices: 

TUSVH =                                                 (3.1) 

U : RM × left singular matrix with rows Miui ≤≤1, , 
S : RR×  diagonal matrix of singular values ;0...21 >≥≥≥ Rsss  
V : RN×  right singular matrix with rows Njv j ≤≤1, . 

Both left and right singular matrices are column-orthogonal. If we 
retain only the top Q singular values in matrix S and zero out the 
other (R-Q) components, the LSI feature dimension could be 
effectively reduced to Q that could be much smaller than R. By 
doing so, the three matrices are much smaller in size than those in 
Eq. (3.1) and it greatly reduces the computation requirements. We 
will explore some possibilities in Section 6. 

4. MFOM LEARNING APPROACH 
As discussed above it is impossible to design an optimal Bayes 
classifier because it is unlikely to know the exact joint 
distribution, P(X,C), between the feature, X, and the category, C. 
In this study we propose a maximal figure-of-merit (MFoM) 
learning approach to optimize any given performance metric for 
any given classifier directly. Since most evaluation metrics of 
interest in classification are discrete functions of error counts and 
not differentiable, some smooth approximation is needed to 
embed given classifiers into overall objective functions of these 
metrics.  
4.1 Performance Metrics 
A set of metrics is needed to evaluate the performance of 
classification systems. To achieve the best performance for 
different applications with different requirements, it is important 
to take into account the effect of these metrics on the design of the 
classifier.  

Denote the precision, recall, and F1 measure for a class 
jC by jjj FRP  and ,, , respectively. They are defined as 

jj

j
j FPTP

TP
P

+
=                                           (4.1) 
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+
=                                          (4.2) 

jjj

j

jj

jj
j TPFNFP

TP
PR

RP
F

2
22

++
=

+
=             (4.3) 

jTP (true positive): no. of documents correctly assigned; 

jFP (false positive): no. of documents falsely accepted; 

jFN (false negative): no. of documents falsely rejected. 
It is clear that these metrics are discrete quantities for counting 
errors and could not be optimized directly because they are not 
differentiable functions of the parameters. 

4.2 Approximating Overall Performance Metrics 
Define a class loss function, ( )WXl j ; , for class jC . To 
approximate the error counts its value should be close to 0 for 
correct, and 1 for incorrect classification, respectively. Clearly 
this loss is a function of the feature vector, X, and the classifier 
parameters, W. Then the true positive, false positive and false 
negative functions for jC , summing over all K samples in T, could 
be approximated as follows: 

 ( )( ) ( )∑
∈

∈⋅−≈
TX

jjj CXWXlTP 1;1                (4.4) 

    ( )( ) ( )∑
∈

∉⋅−≈
TX

jjj CXWXlFP 1;1                  (4.5) 

 ( ) ( )∑
∈

∈⋅≈
TX

jjj CXWXlFN 1;                      (4.6) 

where 1(A) is the indicator function of any logical expression, A. 
As for the choice of an appropriate loss function, any smooth 0-1 
function of a one-dimensional variable approximating a step 
function at the origin will do the job. A sigmoid function shown 
below is often adopted [15,16,17,18] 

 ( ) ( ) );(1
1; βα +−+

= WXdj
je

WXl    (4.7) 

where α  is a positive constant that controls the size of the 
learning window and the learning rate, and β  is a constant 
measuring the offset of ( )WXd j ;  from 0.  

 
Figure 2. Setting sigmoid function parameters 

Figure 2 shows the curves of the sigmoid function in Eq. (4.7) 
with three settings for α and β . The adjusted area (known as 
learning window near the decision boundary) is also shown for the 
setting, 1=α and 0=β . Only the samples, with the d-value 
falling in this area, could be effectively used to update the 
classifier parameters in the GPD algorithm. For others the 
gradient of Eq. (4.7) is close 0  (see Section 5). Since the range of 
the variation for the d-value is different for different real-word 
classification problems, it is necessary to select a suitable 
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α empirically so that ( ) βα +WXd j ; is in the adjusted area for 
most training samples. If α is set too high, it often implies the 
curve in the learning window is too steep and therefore the adjust 
area is too narrow. The setting for β is related to finding the 
location of the decision boundary between the two competing 
classes. Their values could be set according to the distribution of 

( )WXd j ;  in the training set. With more samples located in the 
area, better learning is obtained. 
The most crucial step in the embedding process is to define a class 
misclassification function, ( )WXd j ; , that is negative for a correct 
decision and positive in value otherwise. In the binary tree 
classifiers, with the LDF node decision rules shown in Eq. (2.1), 
we have the following natural choice:  

( )

( )









−+−==

++−=−=

∑

∑

=

=

Cfor      ),(;

Cfor      ),(;

1
0

0
1

R

k
kkj

R

k
kkj

xwwWXfWXd

wxwWXfWXd
   (4.8) 

For a single-level, binary tree classifier the measure in Eq. (4.8) 
serves as a simple way to embed the classifier into the 
performance metrics of interest. However in the multi-level binary 
tree classifiers we are designing, there is no simple way of 
defining an overall misclassification measure in a global manner. 
Instead we repetitively use the function in Eq. (4.8) in every 
internal node of the tree. This results in the need for optimizing 
the node level performance metrics in a recursive manner. 
Although local optimization at each individual node does not 
necessarily lead to global optimization of the entire tree, such a 
node-by-node optimization of the performance metrics have 
produced satisfactory results just like in the case of designing of 
multi-level binary tree classifiers.  

Now we are ready to formulate an overall objective function to 
serve as a figure-of-merit for an application. For example, using 
the class F1 measure approximation defined in Eq. (4.3), we could 
easily define an overall F1 measure approximation as follows ( N : 
the number of classes): 

( ) ∑∑
== ++

==
N

j jjj

jN

j
j TPFNFP

TP
N

F
N

WTF
11 2

21 1;          (4.9)  

By maximizing the F1 measure of each individual class, we have 
an optimal set of N binary classifiers that maximizes the overall F1 
measure as defined in Eq. (4.9).  Another way is to define the 
following approximated error rate at each node using the MCE 
objective ( L : the number of samples in T ),  

         ( ) ( ) ( )∑ ∑
∈ =

∈=
TX

N

j
jj CXWXl

L
WTL

1
1;1;          (4.10) 

4.3 Multiple-Category Classifiers and MFoM 
We now extend the discussion on binary classifier to more 
complex cases. We will show below that the MFoM learning 
framework is ideal for designing discriminative multi-category 
classifiers. For a decision rule that classifies a given document X 
into one of N categories, a popular choice is to maximize over all 
class scores, i.e. 

  ( ) ( ) NjXgXC jj
≤≤Λ= 1,;maxarg               (4.11) 

where ( )XC  is the class label assigned by the decision rule, 
( )Λ;Xg j  is a class discriminant function to compute class 

scores, and Λ is  the entire set of the parameters of the classifiers. 
Such rules have been used extensively in other applications, such 
as automatic speech recognition in which one out of many 
possible sentences are chosen as the most likely recognized string. 
This of course could not be easily accomplished by binary 
classifiers. In multi-category classification, a correct classification 
decision is made for a document X coming from the class jC , 

if ( ) jCXC = , i.e. i∀  

 ( ) ( ) jjij CXXgXg ∈Λ>Λ ≠    ;;                   (4.12) 

One way to embed the discrete decision rule in Eq. (4.11) into an 
optimization objective function is to define a one-dimension class 
misclassification function, ( )Λ;Xd j , such that Eq. (4.12) is 

equivalent to ( ) 0; <ΛXd j . This could be accomplished as 
follows [15,16,17,18] by: 

( ) ( ) ( )
η

η

1

,
;

1
1;;
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+Λ−=Λ ∑
≠ jii

ijj Xg
N

XgXd   (4.13) 

whereη  is a positive constant, N is the total number of categories, 
and the second term is a geometric average of all the scores from 
other competing classes. Intuitively it is noted that when η  
approaches ∞ , the second term of the RHS of Eq. (4.13) 
converges to the highest score among the competing ones. The 
absolute value of the LHS in Eq. (4.13) quantifies the separation 
between the correct and the competing classes. We could 
maximize this separation by minimizing the expected value of 

( )Λ;Xd j  or any non-decreasing function of it. This enhances the 
robustness and improves the classification accuracy. Again the 
same loss function, as defined in Eq. (4.7), could be used to 
approximate the error counts and therefore any function of them. 
For MCE, as an illustration, the total error could be approximated 
similarly as shown in Eq. (4.10). This is also the overall objective 
function to be optimized. GPD algorithms could then be used to 
find the solution. There are no other known formulations capable 
of directly solving this type of discriminative multi-category 
classification. 

5. LEARNING ALGORITHMS 
5.1 Learning Baseline Binary Tree Classifiers 
Now let us give a brief discussion on our baseline binary tree 
classifier. Many algorithms were proposed to find the weights of 
LDF [3,4,28,33]. In this paper, we use the traditional gradient 
descent algorithm based on the perceptron criterion function 
L(T;W) defined below to train our baseline classifier [9] at each 
tree node, 

( ) ( )∑
∈

−=
TX

XWfWTL ',;                      (5.1)                  

where 'X is an augmented feature vector with an element with 
value 1 padded to the original X. By minimizing the perceptron 
criterion the parameters can be updated iteratively using the batch 
perceptron algorithm (BPA) [9],  

∑
∈

+ ⋅+=
tTX

ttt XWW '
1 ε                         (5.2) 

where tT  is the set of the incorrectly classified samples and tε  is 
the learning constant at the t-th iteration. 
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5.2 Learning MFoM Binary Tree Classifiers 
Now let us discuss the detailed algorithm that learns the 
parameters W of the LDF using the MFoM approach. At each 
node we adopt the class misclassification function defined for 
binary classification in Eq. (4.8). 

Generally speaking, the overall performance metrics defined in 
Eq. (4.9) and (4.10) are highly nonlinear functions of the 
parameters W of the classifier. It is difficult or impossible to find 
its closed solution. To solve the optimization problem, GPD 
algorithm is employed to seek an optimal W* that can minimize 
L(T;W)=-F(T;W) defined in Eq. (4.9) in the case of F1 measure as 
the performance metric or minimize L(T;W)=F(T;W) defined in 
Eq. (4.10) in the case of classification error as a metric. From the 
above definitions, the overall objective function is a continuous 
and differentiable function. Denote ( )WTL ;∇  as its gradient. 
Then W* can be found using an iterative method, which has been 
proved to converge to a local minimum [15], 

( )
tWWttt WTLWW =+ ∇−= |;1 κ                  (5.3) 

with tW being the parameters at the t -th iteration, and tκ  being 
an update step size or learning rate. The GPD algorithm assures 
that, with more iterations, the value of the objective function, 
L(T;W), decreases and therefore the F1 measure, F(T;W), 
increases in a probabilistic sense. We will demonstrate this 
property empirically in the next Section. It is interesting to note 
the similarity between Eqs. (5.3) and (5.2). The components of the 
gradient vector of the overall objection ( ) iwWXL ∂∂ ; in Eq. (5.3) 
can be computed using the chain rules. Detail is skipped. 
5.3 Parameter Initialization 
The classifier parameters should be initialized properly to reduce 
training time and speed up the convergence. Here the 
weights, ( )Rwww ,,, 21 L , are set equal to the mean of the training 
samples for the class with the minimal number of the training 
documents, while the offset term 0w is initialized at the minimum 
value of the function kk xw∑ . 

The above initialization strategy works for both BPA and GPD 
learning. For GPD initialization it is also fine to use the parameter 
set of the baseline classifier obtained with BPA. In practice, both 
methods work reasonably well.  

6. RESULTS AND ANALYSIS 
6.1 Experimental Setup 
In the following we reported our experiments with the ModApte 
version of the Reuters-21578 TC task4. Many evaluations have 
been documented [8,14,20,22,35,36]. The original format of the 
text documents is in SGML. We perform some preprocessing to 
filter out the unused parts of a document. We preserved only the 
title, dateline, and the body text, and removed unlabeled 
documents. We then retained only the categories that have at least 
one document in both the training and the testing sets. This 
process results in a collection of 90 categories for training and 
testing. 7,770 training and 3,019 testing documents are left. A set 
of 319 stop words and terms that occur less than 4 times are 
removed. This gave a lexicon with 10,118 entries. Document 
distributions over the 90 categories in both the training and the 
                                                                 

4 http://www.daviddlewis.com/resources/testcollections/reuters2   
  1578/ 

testing set are very unbalanced. For example, the most frequent 
category ‘earn’ has 2,877 training documents. On the other hand 
some categories, such as ‘sun-meal’, ‘castor-oil’, ‘lin-oil’, have 
only one document. This results in inconsistency in comparison.  

To evaluate the classification performance for each category, 
precision, recall, and F1 measure in Eqs. (4.1)-(4.3) are used. To 
evaluate the average performance for the 90 categories, the 
macro-averaging F1 and the micro-averaging F1 are used [32,36] 
and defined as follows: 
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i.e. micro-averaging method calculates the global measures by 
giving category’s local performance measures different weights 
based on their numbers of positive documents. Macro-averaging 
method treats every category equally, and calculates global 
measures as the mean of all categories’ local measures. It is clear 
that the overall objective function defined in Eq. (4.9) resembles 
the micro-averaging F1 defined in Eq. (6.2). It will be shown later 
that the F1-based MFoM approach formulated accordingly also 
works better when using micro-averaging F1 for comparison. 
6.2 Experimental Results 
A 10,118x7,770 term-document matrix was first built from the 
training set using the LSI feature extraction method as discussed 
in Section 3. After SVD5 [2], the rank is found to be 1,613, the 
maximal dimension of the feature vector in the latent semantic 
space. Compared to the original dimension there is a substantial 
reduction even though no further feature reduction is yet imposed. 

In all the following experiments of MFoM learning, the parameter 
0κ  in Eq. (5.3) is set to 0.05. For the Sigmoid function parameters 

in Eq. (4.7), α  is assumed to be fixed at 20. And β is 
dynamically adjusted and set to be the average of the class 
misclassification function values of all the training samples. The 
exact parameter values are not crucial for the experimental results.  
6.2.1  MCE vs. Maximum F1 MFoM Learning 
One advantage of MFoM learning is its ability to integrate any 
performance metric of interest into an overall objection function 
and to learn the parameters of the classifier by optimizing this 
function. In Section 4, we have introduced two kinds of overall 
objective function, one based on the error rate (See Eq. (4.10)) 
and another on the F1 measure (See Eq. (4.9)). In the latter case, 
only the F1 measure for the positive class is considered. But there 
is a severe bias if only the positive samples are used in the 
learning for the former in binary classification. To eliminate this 
bias, the average error rate with equal weight for the positive and 
negative class is used when defining Eq. (4.10). In Table 1 we 
compare the performances of the two methods for the top 10 and 
the other 80 categories using two feature sets, a reduced 
dimension of 400 and the full rank of 1,613. For the top-10 
categories, the F1-based MFoM generally gives better 
performance when compared with the MCE-based MFoM. For the 
other 80 categories, the F1-based MFoM performs better as 
micros-averaging F1 measure. But the MCE-based MFoM 

                                                                 
5 http://www.netlib.org/svdpack/ 
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performs well as macro-averaging F1 measure. Since the 
comparison result for macro-averaging F1 measure is mixed, and 
the F1-based MFoM learning objective simulates micro-averaging 
F1 measure as defined in Eq. (6.2), it seems to indicate that the 
micro-averaging F1 is a more consistent measure than the macro-
averaging F1 for comparison purposes.  

Next we study the effect of the LSI feature dimension on the 
performance of F1-based MFoM. We vary the dimension from 
100 to its full rank of 1,613, and the iteration number in the GPD 
algorithm from 500 to 3,000. The results are shown in Tables 2 
and 3 for the macro-averaging and micro-averaging F1, 
respectively. 

Table 1. Macro-averaging F1 and micro-averaging F1 

Feature dimension 400 1,613 
Merit-of-figure MCE F1 MCE F1 

micro-avg  0.9099 0.9273 0.9157 0.9307
Top-10 

macro-avg 0.8474 0.8728 0.8890 0.8778
micro-avg  0.6548 0.6770 0.7007 0.7141

Other 80 
macro-avg 0.5234 0.4849 0.5659 0.5124

Table 2. Macro-averaging F1 (for all 90 categories) as a 
function of LSI feature dimensions and GPD iterations 

Dim 500ite 1000ite 2000ite 3000ite 
100 0.4720 0.4642 0.4643 0.4612 
200 0.5042 0.5061 0.5040 0.5050 
400 0.5318 0.5324 0.5304 0.5280 
800 0.5410 0.5395 0.5404 0.5384 

1200 0.5556 0.5660 0.5645 0.5650 
1613 0.5557 0.5550 0.5560 0.5540 

Table 3. Micro-averaging F1  (for all 90 categories) as a 
function of LSI feature dimensions and GPD iterations 

Dim 500ite 1000ite 2000ite 3000ite 
100 0.8325 0.8264 0.8265 0.8254 
200 0.8541 0.8558 0.8541 0.8535 
400 0.8702 0.8723 0.8696 0.8697 
800 0.8780 0.8793 0.8817 0.8801 
1200 0.8802 0.8817 0.8819 0.8825 
1613 0.8809 0.8822 0.8842 0.8826 
 

Looking at each column in both tables, we can see that both the 
macro-averaging F1 and micro-averaging F1 values increase in 
most cases when the dimension of the LSI feature varies from 100 
until its full rank of 1,613. When the dimension is beyond 800, 
only little improvement is observed. The values in bold font in 
each column of Table 3 indicate the best micro-averaging F1 for a 
given LSI feature dimension with a fixed number of iterations. 
Since GPD only attains a local optimum in a probabilistic manner 
we could only set the maximum iteration number experimentally. 
In principle, we want to choose a small value to speed up training. 
But it should be not too small in order to achieve a convergence. 
Other faster algorithm have been studied but not reported here. 

6.2.2 Comparing F1-based MFoM, Baseline and SVM 
For TC, SVM classifiers give the best performance in most of the 
data sets. For the Reuters-21578 task, SVM overwhelms the other 
classifiers. In this subsection, we compare our binary tree 
classifier learned by F1-based MFoM (2000 GPD iterations) with 

the baseline classifier learned by the traditional gradient descent 
algorithm based on the perceptron criterion function and linear 
SVM (C=1.0, which achieves the best performance according to 
the micro-averaging F1 on all 90 categories) [13]. Here, the 
baseline classifier and MFoM tree classifier both use the full rank 
LSI feature. SVM uses about 9,600 features without feature 
reduction. Their performance comparison is shown in the Table 4.  

Table 4. Performance comparison in F1 among the baseline 
binary tree, linear SVM and MFoM classifiers 

Category Baseline Linear SVM MFoM 
Earn 0.979 0.982 0.979 
Acq 0.953 0.956 0.968 

Money-fx 0.784 0.785 0.826 
Grain 0.889 0.931 0.906 
Crude 0.887 0.894 0.897 
Trade 0.730 0.792 0.807 

Interest 0.743 0.748 0.792 
Ship 0.853 0.865 0.878 

Wheat 0.829 0.868 0.870 
Corn 0.821 0.878 0.891 

Micro-avg (all 90) 0.854 0.875 0.884 
Macro-avg (all 90) 0.519 NA 0.556 

*The result for linear SVM on macro-averaging F1 is not available. 

In the top 10 categories, the F1 measure with MFoM is slightly 
better than that with SVM, and much better than the baseline. 
There are only two categories (‘earn’ and ‘grain’) in which linear 
SVM showed better performance than MFoM. The same 
conclusion can be drawn for micro-averaging F1 measure when all 
the 90 categories are used. It can be seen from Table 3 that even 
when using only 400 features (1,000 iterations in the GPD), F1-
based MFoM learning gives a micro-averaging F1 value of 0.8723, 
which is comparable with the value of 0.875 obtained with linear 
SVM using all 9,600 features. It is noted that we are comparing 
MFoM and SVM with different sets of features. SVM could also 
be performed on the sets of 1,613 and 400 LSI-derived features. 

6.2.3 Properties of MFoM Learning Method 
We now give some analysis of the MFoM learning algorithm and 
study some nice properties. They can partly explain its success in 
TC. As we have discussed, the optimal LDF weights are learned 
with the GPD algorithm by maximizing the F1 measure of the 
positive class. Figure 3 shows the convergence property of the 
GPD algorithm for category ‘acq’ using “equal weight” 
initialization. Only at the beginning of the process (less than about 
50 iterations in this figure), there are some fluctuations of F1 
values because the learning rate of GPD was set large initially and 
reduced linearly after running a few iterations. The F1 measure 
increases smoothly from 0.362 until it reaches a stable value of 
0.960 after about 150 iterations. It is interesting to note that this 
convergence value for the training set is similar to the value of 
0.968 for testing as shown in Table 4, a close prediction of actual 
performance. 

Figure 4 shows the four distributions (represented by the four 
histograms) of the class misclassification function values for the 
positive and negative classes for the category ‘acq’ in the training 
set. 2 curves show the distributions at the beginning of GPD, and 
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2 for the distributions after 500-iteration of F1-based MFoM 
learning. The arrows in the figure indicate them respectively. An 
improved separation between positive and negative classes over 
the original classifier is clearly observed after the MFoM training. 

 
Figure 3. GPD convergence for category ‘acq’ (feature 

dimension: 400, X-axis: number of the iteration, Y-axis: F1 
measure for the positive class over training samples) 

 
Figure 4. d-value distributions before and after F1-based 

MFoM training for category ‘acq’ (500 iterations, X-axis: d-
value, Y-axis: frequency count) 

As we pointed out in Section 4, the value of the class 
misclassification function is a good indicator if a correct 
classification decision has been made and how far it is from the 
decision boundary (a good measure of robustness). At the 
beginning of MFoM learning, there is a large overlap between the 
distributions of the C+ and C- samples. This implies a higher 
error rate. After 500 iterations of MFoM learning the curve of the 
positive class moves left while that of the negative class moves 
right. This results in a smaller overlap and a reduced error rate. 
Figure 4 also shows that the curves of the distribution become 
‘flat’ after MFoM training, a clear indication that the MFoM-
trained classifier is more robust and less sensitive to data 
variation. 

Recall that SVM tries to find a decision boundary that gives a 
maximal distance between the two classes. MFoM learning tries 
to do the same and directly optimizes the desired performance 
metrics. The measures observed in training could also be used to 
predict the performance for the unobserved testing data. 

7. SUMMARY AND CONCLUSION 
In this paper we propose a maximal figure-of-merit (MFoM) 
learning framework, in which an overall objective function is 

designed to directly relate the parameters of the classifier to the 
performance metrics of interest. A smooth approximation of some 
discrete quantities representing error counts is required to embed 
the classifier decision rules into the objective function. This 
decision-feedback learning framework is attractive because it 
offers a novel way to directly optimize the performance of any 
classifier with any evaluation measures of interest. These 
evaluation measures obtained in training could also be used to 
predict the same metrics computed on a similar testing set, 
making it easy for a designer to estimate the performance of the 
classifier without the need of running an extensive set of 
experiments or collecting a large set of evaluation data, which 
could be very expensive. 

Using the ModApte version of the Reuters-21578 TC task, we 
first studied two different MFoM learning methods, namely MCE-
based MFoM, using error rates, and F1-based MFoM, using F1, as 
the training objectives.  The latter gives better micro-averaging F1. 
We then compared the MFoM learning approach with a baseline 
binary classifier and a linear SVM classifier. The results showed 
that the F1-based MFoM learning approach with the full rank 
(1,613) LSI features outperformed SVM with 9,600- dimension 
features. It also enhanced the robustness and improved the 
performance over the baseline classifier. Using only 400 LSI 
features, the MFoM approach achieved the micro-averaging F1 
value of 0.8723, which is comparable to that obtained with the 
popular SVM classifier.  

Finally we also demonstrated how MFoM learning could be 
extended to multi-category classification. Similar to the MCE-
formulation used in many applications, such as speech 
recognition, a one-dimensional misclassification function could be 
defined to measure the degree of separation between the correct 
and all the competing classes collectively. An overall objective 
function could then be defined accordingly to embed the 
classification decision rules into the training objective for 
optimization. This offers a new tool for designing high 
performance, multi-category classifiers for many new 
applications.  

We anticipate more future work on MFoM learning, including a 
comparative study on the evaluation of different performance 
metrics using different training objectives on individual classes 
and the overall design. We will examine MFoM-based multi-
category classifiers beyond the currently prevailing binary 
classifiers. We will also extend the MFoM methodology to other 
interesting classification and verification problems in natural 
language processing, text categorization, information retrieval and 
data mining.  
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