
A Maximal Figure-of-Merit Learning Approach
to Text Categorization

Sheng Gao1, Wen Wu2, Chin-Hui Lee2,3, Tat-Seng Chua2

1 Institute for Infocomm Research
21 Heng Mui Keng Terrace

Singapore 119613
+65-6874-1948

2 School of Computing
 National Univ. of Singapore

 3 Science Drive 2, Singapore
+65-6874-2505

3 School of Electrical & Computer Engr.
Georgia Institute of Technology

Atlanta, GA 30332 USA
+1-404-894-7468

gaosheng@i2r.a-star.edu.sg {wuwen,chl,chuats}@comp.nus.edu.sg chl@ece.gatech.edu

ABSTRACT
A novel maximal figure-of-merit (MFoM) learning approach to
text categorization is proposed. Different from the conventional
techniques, the proposed MFoM method attempts to integrate any
performance metric of interest (e.g. accuracy, recall, precision, or
F1 measure) into the design of any classifier. The corresponding
classifier parameters are learned by optimizing an overall
objective function of interest. To solve this highly nonlinear
optimization problem, we use a generalized probabilistic descent
algorithm. The MFoM learning framework is evaluated on the
Reuters-21578 task with LSI-based feature extraction and a binary
tree classifier. Experimental results indicate that the MFoM
classifier gives improved F1 and enhanced robustness over the
conventional one. It also outperforms the popular SVM method in
micro-averaging F1. Other extensions to design discriminative
multiple-category MFoM classifiers for application scenarios with
new performance metrics could be envisioned too.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.5.2 [Pattern Recognition]: Design Methodology

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords: Text categorization, maximal figure-of-merit,
generalized probabilistic descent method, latent semantic
indexing, support vector machines, decision tree

1. INTRODUCTION
Text categorization (TC) is a process of classifying a text
document into some pre-defined categories. It is an important
research problem in information retrieval (IR), information
extraction and filtering and natural language processing. In the
past two decades TC has received much attention [32]. A number
of machine learning approaches to TC have been proposed. They

are Bayesian method [20,23,25], k-nearest neighbors (kNN)
[24,36,37], Rocchio algorithm [5,12], artificial neural networks
(ANN) [10,22,27,29,31], support vector machines (SVM)
[6,13,14], boosting [30], decision tree (DT) [3,4,10,20,28,33], and
hidden Markov model (HMM) [8,26]. Some are based on widely
available software packages, such as C4.51, CART2, and SVM3.

Most of these methods aim at learning parameters of a joint
distribution, P(X,C), between the observed feature, X, of a
document and its corresponding category, C. It is well known that
if P(X,C) is specified exactly, an optimal classifier can be
designed to minimize the Bayes risk (e.g. [18]). Unfortunately, for
most real-world problems, the exact form of the joint distribution
is usually unavailable. Even we are lucky to be given the
distribution form, the parameters of the joint distribution would
still have to be estimated from a labeled training set. To reduce
the complexity of the design, P(X,C) is usually decomposed into
two learning components, P(X|C) and P(C), known as the
conditional class and prior class distributions, respectively. In
most pattern recognition scenarios, the latter is often assumed to
be equally probable and ignored [20,23,25]. The former is
assumed to be a distribution with a known form, e.g. mixture
Gaussian densities in HMM [19], multinomial density in naïve
Bayes [20,23,25], etc. Maximum likelihood (ML) techniques are
then used to estimate the parameters. When the actual training and
testing data do not support this assumption, the system
performance is degraded. To overcome this mismatch for any
given classifier with any density, minimum classification error
(MCE) techniques [15,16,17,18] were proposed to directly
minimize the empirical error of the training set. A family of
generalized probabilistic descent (GPD) [16] algorithms was used
to solve for the parameters in an iterative manner. The MCE
framework has been successfully adopted in speech and speaker
recognition and related problems [15,16]. Recently it was
extended to vector-based call routing [17]. Other learning
approaches, such as ANN, SVM, etc., are based on some error
related criteria, such as minimum least-mean-square in ANN, and
structural risk minimization principle in SVM.

For TC, the conventional techniques do not directly train the
parameters of the corresponding classifier based on the criterion
of maximizing a real performance metric, such as recall,

1 http://www.cse.unsw.edu.au/~quinlan/
2 http://www.salford-systems.com/
3 http://www.ece.umn.edu/groups/ece8591/software/svm.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR ’03, July 28-August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007…$5.00.

174

precision, or F1 measure. Furthermore, it becomes flexible for
most researchers if appropriate metrics could be chosen for
different tasks and a system could then be designed accordingly.

In this paper we propose a novel Maximal Figure-of-Merit
(MFoM) approach that has a consistent learning objective with the
evaluation metrics of a given application. The difficulty in such a
formulation lies in computing discrete quantities, such as recall,
precision and F1, because they are not differentiable functions of
the parameters and therefore could not be easily optimized. In the
proposed framework, we design a training objective that directly
relates the classifier parameters to the performance metric of
interest through a smooth approximation of the errors and related
metrics that could be optimized directly.

The remainder of the paper is organized as follows. Section 2
discusses TC work related to this study. Section 3 describes
document feature extraction based on latent semantic indexing
(LSI). Section 4 introduces theory of the MFoM learning
approach. Section 5 lays out the iterative GPD algorithm.
Experimental results based on the Reuters-21578 task are then
presented in Section 6. Finally we summarize our findings in
Section 7.

2. RELATED WORK IN TC
A good tutorial on the state-of-the-art of TC techniques can be
found in [32]. For work relevant to this study we focus more
discussion on decision trees [3,4,10,28,33] and SVM [6,13,14]
because binary tree classifiers are our baseline classifiers and
SVM is the target classifier with which we compare our proposed
MFoM-based approaches. Details on other machine learning
techniques for text categorization have also been documented
[8,20,21,22,23,24,25,26,27,30,37].
2.1 Decision Tree (DT)
Given a set of labeled training samples each of which is
represented by a feature vector (the vector component could either
be a numeric or symbolic value), a regression tree could be
constructed by recursive partitioning of samples that belong to a
tree node. At each node, a decision rule that minimizes an
impurity function is chosen to partition the training samples. To
avoid over-fitting, tree pruning is needed. Cross-validation can
also be applied if necessary. The decision rule at each node can
either be a non-parametric or parametric model. A non-parametric
rule could be a statement, like “if feature X < 5.0?” or
“Y==male?”. A parametric example could be a linear
discriminatnt function [4,33], a neural network [10], the Rocchio
algorithm or Naïve Bayesian [35]. Some DT tools, such as CART,
ID3 and C4.5, have been widely adopted [3,28] for TC
applications.
2.2 Binary Tree Classifier
TC is often solved by designing a set of N binary classifiers, each
only determines if a document is relevant to a specific category.
Each binary classifier is trained from a category-based training
set, which is obtained by re-labeling each document in the training
corpus T with either the positive class, C+, if it is relevant to the
category, or the negative class, C-, if irrelevant. Figure 1 shows an
example. Each node, except the root, is given a relevance label
(positive or negative). All training samples that enter into it are
classified according to the node label. Recursive splitting is then
performed to build the tree node-by-node.

For each node a decision rule needs to be defined. In this study we
use a linear discriminant function (LDF) that can be learned from
these samples corresponding to the node. For a feature vector X,
we define the LDF as

 () 0
1

, wxwXWf
R

k
kk −= ∑

=
 (2.1)

where R is the feature dimension, W is the weight vector, and
Rix i L,2,1(=) is the i-th component of X.

Figure 1. A binary tree classifier

In order to split a set of samples into two child nodes, called Yes
node labeled by the positive class (left branch of a node in Figure
1) and No node labeled by the negative (right branch of a node in
Figure 1), a decision rule is applied. For any document with
feature, X , if () 0, >XWf , it is assigned into the Yes node (C+).
Otherwise, it is assigned into the No node (C-). The optimal
parameters W are learned using a number of algorithms to be
discussed later. The above procedure is run recursively until there
are no more nodes left to be split. At this point a binary tree
classifier is finally established.

In testing for a given document with feature X, the learned tree
classifier assigns it as either positive or negative. The process
starts from the root. If () 0, >XWf , it enters the Yes node (left
branch). Otherwise, it enters the No node. It continues until a leaf
is reached, the label at the leaf is then assigned to the document.
2.3 Support Vector Machine (SVM)
The support vector machine learning framework was first
proposed to solve the two-class classification problem by Vapnik
in 1979 (in Russian). The decision function is defined as

() K,1,k ,1, L=≥kk XWfz , where 1=kz stands for positive
and 1−=kz for negative cases, W is the parameters to be
estimated, kX is the k-th sample vector, and K is the total number
of the training samples.

SVM tries to find a decision surface that can maximally separate
two classes based on the structural risk minimization principle
[34]. Similar to the binary tree classifier discussed above with
LDF, a linear decision function, () bXWXWf kk −⋅=, , is used in
the case of linear SVM. The parameter vector, W, could be
estimated by minimizing 2W subject to the constraint,

1)(≥−⋅ bXWz kk , k∀ .

C- (Negative) C+(Positive)

Root

Leaf

175

Joachims [13,14] applied SVM to TC. His experimental results
showed that SVM outperformed most existing TC classifiers, such
as Naïve Bayesian, Rocchio algorithm, C4.5, and k-NN.

3. LSI-BASED FEATURE EXTRACTION
In IR, a document is often represented by a feature vector with the
dimension equal to the size of the lexicon. Each component of the
feature vector corresponds to the contribution of a term occurred
in the document. In a typical application the lexicon usually has
more than ten thousand entries. Many techniques, such as feature
selection [32], have been proposed to reduce the dimension.
Latent semantic indexing (LSI) [1] is a way to achieve both
feature extraction and reduction. Probabilistic LSI (PLSI) [11] has
also been used. In this study, singular value decomposition (SVD)
based LSI is used to get a lower dimension than the original one
by decomposing the term-document matrix H into a multiplication
of three matrices:

TUSVH = (3.1)

U : RM × left singular matrix with rows Miui ≤≤1, ,
S : RR× diagonal matrix of singular values ;0...21 >≥≥≥ Rsss
V : RN× right singular matrix with rows Njv j ≤≤1, .

Both left and right singular matrices are column-orthogonal. If we
retain only the top Q singular values in matrix S and zero out the
other (R-Q) components, the LSI feature dimension could be
effectively reduced to Q that could be much smaller than R. By
doing so, the three matrices are much smaller in size than those in
Eq. (3.1) and it greatly reduces the computation requirements. We
will explore some possibilities in Section 6.

4. MFOM LEARNING APPROACH
As discussed above it is impossible to design an optimal Bayes
classifier because it is unlikely to know the exact joint
distribution, P(X,C), between the feature, X, and the category, C.
In this study we propose a maximal figure-of-merit (MFoM)
learning approach to optimize any given performance metric for
any given classifier directly. Since most evaluation metrics of
interest in classification are discrete functions of error counts and
not differentiable, some smooth approximation is needed to
embed given classifiers into overall objective functions of these
metrics.
4.1 Performance Metrics
A set of metrics is needed to evaluate the performance of
classification systems. To achieve the best performance for
different applications with different requirements, it is important
to take into account the effect of these metrics on the design of the
classifier.

Denote the precision, recall, and F1 measure for a class
jC by jjj FRP and ,, , respectively. They are defined as

jj

j
j FPTP

TP
P

+
= (4.1)

jj

j
j FNTP

TP
R

+
= (4.2)

jjj

j

jj

jj
j TPFNFP

TP
PR

RP
F

2
22

++
=

+
= (4.3)

jTP (true positive): no. of documents correctly assigned;

jFP (false positive): no. of documents falsely accepted;

jFN (false negative): no. of documents falsely rejected.
It is clear that these metrics are discrete quantities for counting
errors and could not be optimized directly because they are not
differentiable functions of the parameters.

4.2 Approximating Overall Performance Metrics
Define a class loss function, ()WXl j ; , for class jC . To
approximate the error counts its value should be close to 0 for
correct, and 1 for incorrect classification, respectively. Clearly
this loss is a function of the feature vector, X, and the classifier
parameters, W. Then the true positive, false positive and false
negative functions for jC , summing over all K samples in T, could
be approximated as follows:

 ()() ()∑
∈

∈⋅−≈
TX

jjj CXWXlTP 1;1 (4.4)

 ()() ()∑
∈

∉⋅−≈
TX

jjj CXWXlFP 1;1 (4.5)

 () ()∑
∈

∈⋅≈
TX

jjj CXWXlFN 1; (4.6)

where 1(A) is the indicator function of any logical expression, A.
As for the choice of an appropriate loss function, any smooth 0-1
function of a one-dimensional variable approximating a step
function at the origin will do the job. A sigmoid function shown
below is often adopted [15,16,17,18]

 () ());(1
1; βα +−+

= WXdj
je

WXl (4.7)

where α is a positive constant that controls the size of the
learning window and the learning rate, and β is a constant
measuring the offset of ()WXd j ; from 0.

Figure 2. Setting sigmoid function parameters

Figure 2 shows the curves of the sigmoid function in Eq. (4.7)
with three settings for α and β . The adjusted area (known as
learning window near the decision boundary) is also shown for the
setting, 1=α and 0=β . Only the samples, with the d-value
falling in this area, could be effectively used to update the
classifier parameters in the GPD algorithm. For others the
gradient of Eq. (4.7) is close 0 (see Section 5). Since the range of
the variation for the d-value is different for different real-word
classification problems, it is necessary to select a suitable

176

α empirically so that () βα +WXd j ; is in the adjusted area for
most training samples. If α is set too high, it often implies the
curve in the learning window is too steep and therefore the adjust
area is too narrow. The setting for β is related to finding the
location of the decision boundary between the two competing
classes. Their values could be set according to the distribution of

()WXd j ; in the training set. With more samples located in the
area, better learning is obtained.
The most crucial step in the embedding process is to define a class
misclassification function, ()WXd j ; , that is negative for a correct
decision and positive in value otherwise. In the binary tree
classifiers, with the LDF node decision rules shown in Eq. (2.1),
we have the following natural choice:

()

()

−+−==

++−=−=

∑

∑

=

=

Cfor),(;

Cfor),(;

1
0

0
1

R

k
kkj

R

k
kkj

xwwWXfWXd

wxwWXfWXd
 (4.8)

For a single-level, binary tree classifier the measure in Eq. (4.8)
serves as a simple way to embed the classifier into the
performance metrics of interest. However in the multi-level binary
tree classifiers we are designing, there is no simple way of
defining an overall misclassification measure in a global manner.
Instead we repetitively use the function in Eq. (4.8) in every
internal node of the tree. This results in the need for optimizing
the node level performance metrics in a recursive manner.
Although local optimization at each individual node does not
necessarily lead to global optimization of the entire tree, such a
node-by-node optimization of the performance metrics have
produced satisfactory results just like in the case of designing of
multi-level binary tree classifiers.

Now we are ready to formulate an overall objective function to
serve as a figure-of-merit for an application. For example, using
the class F1 measure approximation defined in Eq. (4.3), we could
easily define an overall F1 measure approximation as follows (N :
the number of classes):

() ∑∑
== ++

==
N

j jjj

jN

j
j TPFNFP

TP
N

F
N

WTF
11 2

21 1; (4.9)

By maximizing the F1 measure of each individual class, we have
an optimal set of N binary classifiers that maximizes the overall F1
measure as defined in Eq. (4.9). Another way is to define the
following approximated error rate at each node using the MCE
objective (L : the number of samples in T),

 () () ()∑ ∑
∈ =

∈=
TX

N

j
jj CXWXl

L
WTL

1
1;1; (4.10)

4.3 Multiple-Category Classifiers and MFoM
We now extend the discussion on binary classifier to more
complex cases. We will show below that the MFoM learning
framework is ideal for designing discriminative multi-category
classifiers. For a decision rule that classifies a given document X
into one of N categories, a popular choice is to maximize over all
class scores, i.e.

 () () NjXgXC jj
≤≤Λ= 1,;maxarg (4.11)

where ()XC is the class label assigned by the decision rule,
()Λ;Xg j is a class discriminant function to compute class

scores, and Λ is the entire set of the parameters of the classifiers.
Such rules have been used extensively in other applications, such
as automatic speech recognition in which one out of many
possible sentences are chosen as the most likely recognized string.
This of course could not be easily accomplished by binary
classifiers. In multi-category classification, a correct classification
decision is made for a document X coming from the class jC ,

if () jCXC = , i.e. i∀

 () () jjij CXXgXg ∈Λ>Λ ≠ ;; (4.12)

One way to embed the discrete decision rule in Eq. (4.11) into an
optimization objective function is to define a one-dimension class
misclassification function, ()Λ;Xd j , such that Eq. (4.12) is

equivalent to () 0; <ΛXd j . This could be accomplished as
follows [15,16,17,18] by:

() () ()
η

η

1

,
;

1
1;;

Λ
−

+Λ−=Λ ∑
≠ jii

ijj Xg
N

XgXd (4.13)

whereη is a positive constant, N is the total number of categories,
and the second term is a geometric average of all the scores from
other competing classes. Intuitively it is noted that when η
approaches ∞ , the second term of the RHS of Eq. (4.13)
converges to the highest score among the competing ones. The
absolute value of the LHS in Eq. (4.13) quantifies the separation
between the correct and the competing classes. We could
maximize this separation by minimizing the expected value of

()Λ;Xd j or any non-decreasing function of it. This enhances the
robustness and improves the classification accuracy. Again the
same loss function, as defined in Eq. (4.7), could be used to
approximate the error counts and therefore any function of them.
For MCE, as an illustration, the total error could be approximated
similarly as shown in Eq. (4.10). This is also the overall objective
function to be optimized. GPD algorithms could then be used to
find the solution. There are no other known formulations capable
of directly solving this type of discriminative multi-category
classification.

5. LEARNING ALGORITHMS
5.1 Learning Baseline Binary Tree Classifiers
Now let us give a brief discussion on our baseline binary tree
classifier. Many algorithms were proposed to find the weights of
LDF [3,4,28,33]. In this paper, we use the traditional gradient
descent algorithm based on the perceptron criterion function
L(T;W) defined below to train our baseline classifier [9] at each
tree node,

() ()∑
∈

−=
TX

XWfWTL ',; (5.1)

where 'X is an augmented feature vector with an element with
value 1 padded to the original X. By minimizing the perceptron
criterion the parameters can be updated iteratively using the batch
perceptron algorithm (BPA) [9],

∑
∈

+ ⋅+=
tTX

ttt XWW '
1 ε (5.2)

where tT is the set of the incorrectly classified samples and tε is
the learning constant at the t-th iteration.

177

5.2 Learning MFoM Binary Tree Classifiers
Now let us discuss the detailed algorithm that learns the
parameters W of the LDF using the MFoM approach. At each
node we adopt the class misclassification function defined for
binary classification in Eq. (4.8).

Generally speaking, the overall performance metrics defined in
Eq. (4.9) and (4.10) are highly nonlinear functions of the
parameters W of the classifier. It is difficult or impossible to find
its closed solution. To solve the optimization problem, GPD
algorithm is employed to seek an optimal W* that can minimize
L(T;W)=-F(T;W) defined in Eq. (4.9) in the case of F1 measure as
the performance metric or minimize L(T;W)=F(T;W) defined in
Eq. (4.10) in the case of classification error as a metric. From the
above definitions, the overall objective function is a continuous
and differentiable function. Denote ()WTL ;∇ as its gradient.
Then W* can be found using an iterative method, which has been
proved to converge to a local minimum [15],

()
tWWttt WTLWW =+ ∇−= |;1 κ (5.3)

with tW being the parameters at the t -th iteration, and tκ being
an update step size or learning rate. The GPD algorithm assures
that, with more iterations, the value of the objective function,
L(T;W), decreases and therefore the F1 measure, F(T;W),
increases in a probabilistic sense. We will demonstrate this
property empirically in the next Section. It is interesting to note
the similarity between Eqs. (5.3) and (5.2). The components of the
gradient vector of the overall objection () iwWXL ∂∂ ; in Eq. (5.3)
can be computed using the chain rules. Detail is skipped.
5.3 Parameter Initialization
The classifier parameters should be initialized properly to reduce
training time and speed up the convergence. Here the
weights, ()Rwww ,,, 21 L , are set equal to the mean of the training
samples for the class with the minimal number of the training
documents, while the offset term 0w is initialized at the minimum
value of the function kk xw∑ .

The above initialization strategy works for both BPA and GPD
learning. For GPD initialization it is also fine to use the parameter
set of the baseline classifier obtained with BPA. In practice, both
methods work reasonably well.

6. RESULTS AND ANALYSIS
6.1 Experimental Setup
In the following we reported our experiments with the ModApte
version of the Reuters-21578 TC task4. Many evaluations have
been documented [8,14,20,22,35,36]. The original format of the
text documents is in SGML. We perform some preprocessing to
filter out the unused parts of a document. We preserved only the
title, dateline, and the body text, and removed unlabeled
documents. We then retained only the categories that have at least
one document in both the training and the testing sets. This
process results in a collection of 90 categories for training and
testing. 7,770 training and 3,019 testing documents are left. A set
of 319 stop words and terms that occur less than 4 times are
removed. This gave a lexicon with 10,118 entries. Document
distributions over the 90 categories in both the training and the

4 http://www.daviddlewis.com/resources/testcollections/reuters2
 1578/

testing set are very unbalanced. For example, the most frequent
category ‘earn’ has 2,877 training documents. On the other hand
some categories, such as ‘sun-meal’, ‘castor-oil’, ‘lin-oil’, have
only one document. This results in inconsistency in comparison.

To evaluate the classification performance for each category,
precision, recall, and F1 measure in Eqs. (4.1)-(4.3) are used. To
evaluate the average performance for the 90 categories, the
macro-averaging F1 and the micro-averaging F1 are used [32,36]
and defined as follows:

)(

2

11

1 1
1

∑∑
∑ ∑

==

= =

+
= N

i i
N
i i

N
i

N
i iiM

RPN

PR
F (6.1)

∑∑∑
∑

===

=

++
= N

i i
N
i i

N
i i

N
i i

TPFNFP

TP
F

111

1
1

2

2µ (6.2)

i.e. micro-averaging method calculates the global measures by
giving category’s local performance measures different weights
based on their numbers of positive documents. Macro-averaging
method treats every category equally, and calculates global
measures as the mean of all categories’ local measures. It is clear
that the overall objective function defined in Eq. (4.9) resembles
the micro-averaging F1 defined in Eq. (6.2). It will be shown later
that the F1-based MFoM approach formulated accordingly also
works better when using micro-averaging F1 for comparison.
6.2 Experimental Results
A 10,118x7,770 term-document matrix was first built from the
training set using the LSI feature extraction method as discussed
in Section 3. After SVD5 [2], the rank is found to be 1,613, the
maximal dimension of the feature vector in the latent semantic
space. Compared to the original dimension there is a substantial
reduction even though no further feature reduction is yet imposed.

In all the following experiments of MFoM learning, the parameter
0κ in Eq. (5.3) is set to 0.05. For the Sigmoid function parameters

in Eq. (4.7), α is assumed to be fixed at 20. And β is
dynamically adjusted and set to be the average of the class
misclassification function values of all the training samples. The
exact parameter values are not crucial for the experimental results.
6.2.1 MCE vs. Maximum F1 MFoM Learning
One advantage of MFoM learning is its ability to integrate any
performance metric of interest into an overall objection function
and to learn the parameters of the classifier by optimizing this
function. In Section 4, we have introduced two kinds of overall
objective function, one based on the error rate (See Eq. (4.10))
and another on the F1 measure (See Eq. (4.9)). In the latter case,
only the F1 measure for the positive class is considered. But there
is a severe bias if only the positive samples are used in the
learning for the former in binary classification. To eliminate this
bias, the average error rate with equal weight for the positive and
negative class is used when defining Eq. (4.10). In Table 1 we
compare the performances of the two methods for the top 10 and
the other 80 categories using two feature sets, a reduced
dimension of 400 and the full rank of 1,613. For the top-10
categories, the F1-based MFoM generally gives better
performance when compared with the MCE-based MFoM. For the
other 80 categories, the F1-based MFoM performs better as
micros-averaging F1 measure. But the MCE-based MFoM

5 http://www.netlib.org/svdpack/

178

performs well as macro-averaging F1 measure. Since the
comparison result for macro-averaging F1 measure is mixed, and
the F1-based MFoM learning objective simulates micro-averaging
F1 measure as defined in Eq. (6.2), it seems to indicate that the
micro-averaging F1 is a more consistent measure than the macro-
averaging F1 for comparison purposes.

Next we study the effect of the LSI feature dimension on the
performance of F1-based MFoM. We vary the dimension from
100 to its full rank of 1,613, and the iteration number in the GPD
algorithm from 500 to 3,000. The results are shown in Tables 2
and 3 for the macro-averaging and micro-averaging F1,
respectively.

Table 1. Macro-averaging F1 and micro-averaging F1

Feature dimension 400 1,613
Merit-of-figure MCE F1 MCE F1

micro-avg 0.9099 0.9273 0.9157 0.9307
Top-10

macro-avg 0.8474 0.8728 0.8890 0.8778
micro-avg 0.6548 0.6770 0.7007 0.7141

Other 80
macro-avg 0.5234 0.4849 0.5659 0.5124

Table 2. Macro-averaging F1 (for all 90 categories) as a
function of LSI feature dimensions and GPD iterations

Dim 500ite 1000ite 2000ite 3000ite
100 0.4720 0.4642 0.4643 0.4612
200 0.5042 0.5061 0.5040 0.5050
400 0.5318 0.5324 0.5304 0.5280
800 0.5410 0.5395 0.5404 0.5384

1200 0.5556 0.5660 0.5645 0.5650
1613 0.5557 0.5550 0.5560 0.5540

Table 3. Micro-averaging F1 (for all 90 categories) as a
function of LSI feature dimensions and GPD iterations

Dim 500ite 1000ite 2000ite 3000ite
100 0.8325 0.8264 0.8265 0.8254
200 0.8541 0.8558 0.8541 0.8535
400 0.8702 0.8723 0.8696 0.8697
800 0.8780 0.8793 0.8817 0.8801
1200 0.8802 0.8817 0.8819 0.8825
1613 0.8809 0.8822 0.8842 0.8826

Looking at each column in both tables, we can see that both the
macro-averaging F1 and micro-averaging F1 values increase in
most cases when the dimension of the LSI feature varies from 100
until its full rank of 1,613. When the dimension is beyond 800,
only little improvement is observed. The values in bold font in
each column of Table 3 indicate the best micro-averaging F1 for a
given LSI feature dimension with a fixed number of iterations.
Since GPD only attains a local optimum in a probabilistic manner
we could only set the maximum iteration number experimentally.
In principle, we want to choose a small value to speed up training.
But it should be not too small in order to achieve a convergence.
Other faster algorithm have been studied but not reported here.

6.2.2 Comparing F1-based MFoM, Baseline and SVM
For TC, SVM classifiers give the best performance in most of the
data sets. For the Reuters-21578 task, SVM overwhelms the other
classifiers. In this subsection, we compare our binary tree
classifier learned by F1-based MFoM (2000 GPD iterations) with

the baseline classifier learned by the traditional gradient descent
algorithm based on the perceptron criterion function and linear
SVM (C=1.0, which achieves the best performance according to
the micro-averaging F1 on all 90 categories) [13]. Here, the
baseline classifier and MFoM tree classifier both use the full rank
LSI feature. SVM uses about 9,600 features without feature
reduction. Their performance comparison is shown in the Table 4.

Table 4. Performance comparison in F1 among the baseline
binary tree, linear SVM and MFoM classifiers

Category Baseline Linear SVM MFoM
Earn 0.979 0.982 0.979
Acq 0.953 0.956 0.968

Money-fx 0.784 0.785 0.826
Grain 0.889 0.931 0.906
Crude 0.887 0.894 0.897
Trade 0.730 0.792 0.807

Interest 0.743 0.748 0.792
Ship 0.853 0.865 0.878

Wheat 0.829 0.868 0.870
Corn 0.821 0.878 0.891

Micro-avg (all 90) 0.854 0.875 0.884
Macro-avg (all 90) 0.519 NA 0.556

*The result for linear SVM on macro-averaging F1 is not available.

In the top 10 categories, the F1 measure with MFoM is slightly
better than that with SVM, and much better than the baseline.
There are only two categories (‘earn’ and ‘grain’) in which linear
SVM showed better performance than MFoM. The same
conclusion can be drawn for micro-averaging F1 measure when all
the 90 categories are used. It can be seen from Table 3 that even
when using only 400 features (1,000 iterations in the GPD), F1-
based MFoM learning gives a micro-averaging F1 value of 0.8723,
which is comparable with the value of 0.875 obtained with linear
SVM using all 9,600 features. It is noted that we are comparing
MFoM and SVM with different sets of features. SVM could also
be performed on the sets of 1,613 and 400 LSI-derived features.

6.2.3 Properties of MFoM Learning Method
We now give some analysis of the MFoM learning algorithm and
study some nice properties. They can partly explain its success in
TC. As we have discussed, the optimal LDF weights are learned
with the GPD algorithm by maximizing the F1 measure of the
positive class. Figure 3 shows the convergence property of the
GPD algorithm for category ‘acq’ using “equal weight”
initialization. Only at the beginning of the process (less than about
50 iterations in this figure), there are some fluctuations of F1
values because the learning rate of GPD was set large initially and
reduced linearly after running a few iterations. The F1 measure
increases smoothly from 0.362 until it reaches a stable value of
0.960 after about 150 iterations. It is interesting to note that this
convergence value for the training set is similar to the value of
0.968 for testing as shown in Table 4, a close prediction of actual
performance.

Figure 4 shows the four distributions (represented by the four
histograms) of the class misclassification function values for the
positive and negative classes for the category ‘acq’ in the training
set. 2 curves show the distributions at the beginning of GPD, and

179

2 for the distributions after 500-iteration of F1-based MFoM
learning. The arrows in the figure indicate them respectively. An
improved separation between positive and negative classes over
the original classifier is clearly observed after the MFoM training.

Figure 3. GPD convergence for category ‘acq’ (feature

dimension: 400, X-axis: number of the iteration, Y-axis: F1
measure for the positive class over training samples)

Figure 4. d-value distributions before and after F1-based

MFoM training for category ‘acq’ (500 iterations, X-axis: d-
value, Y-axis: frequency count)

As we pointed out in Section 4, the value of the class
misclassification function is a good indicator if a correct
classification decision has been made and how far it is from the
decision boundary (a good measure of robustness). At the
beginning of MFoM learning, there is a large overlap between the
distributions of the C+ and C- samples. This implies a higher
error rate. After 500 iterations of MFoM learning the curve of the
positive class moves left while that of the negative class moves
right. This results in a smaller overlap and a reduced error rate.
Figure 4 also shows that the curves of the distribution become
‘flat’ after MFoM training, a clear indication that the MFoM-
trained classifier is more robust and less sensitive to data
variation.

Recall that SVM tries to find a decision boundary that gives a
maximal distance between the two classes. MFoM learning tries
to do the same and directly optimizes the desired performance
metrics. The measures observed in training could also be used to
predict the performance for the unobserved testing data.

7. SUMMARY AND CONCLUSION
In this paper we propose a maximal figure-of-merit (MFoM)
learning framework, in which an overall objective function is

designed to directly relate the parameters of the classifier to the
performance metrics of interest. A smooth approximation of some
discrete quantities representing error counts is required to embed
the classifier decision rules into the objective function. This
decision-feedback learning framework is attractive because it
offers a novel way to directly optimize the performance of any
classifier with any evaluation measures of interest. These
evaluation measures obtained in training could also be used to
predict the same metrics computed on a similar testing set,
making it easy for a designer to estimate the performance of the
classifier without the need of running an extensive set of
experiments or collecting a large set of evaluation data, which
could be very expensive.

Using the ModApte version of the Reuters-21578 TC task, we
first studied two different MFoM learning methods, namely MCE-
based MFoM, using error rates, and F1-based MFoM, using F1, as
the training objectives. The latter gives better micro-averaging F1.
We then compared the MFoM learning approach with a baseline
binary classifier and a linear SVM classifier. The results showed
that the F1-based MFoM learning approach with the full rank
(1,613) LSI features outperformed SVM with 9,600- dimension
features. It also enhanced the robustness and improved the
performance over the baseline classifier. Using only 400 LSI
features, the MFoM approach achieved the micro-averaging F1
value of 0.8723, which is comparable to that obtained with the
popular SVM classifier.

Finally we also demonstrated how MFoM learning could be
extended to multi-category classification. Similar to the MCE-
formulation used in many applications, such as speech
recognition, a one-dimensional misclassification function could be
defined to measure the degree of separation between the correct
and all the competing classes collectively. An overall objective
function could then be defined accordingly to embed the
classification decision rules into the training objective for
optimization. This offers a new tool for designing high
performance, multi-category classifiers for many new
applications.

We anticipate more future work on MFoM learning, including a
comparative study on the evaluation of different performance
metrics using different training objectives on individual classes
and the overall design. We will examine MFoM-based multi-
category classifiers beyond the currently prevailing binary
classifiers. We will also extend the MFoM methodology to other
interesting classification and verification problems in natural
language processing, text categorization, information retrieval and
data mining.

8. ACKNOWLEDGEMENT
This work was carried out while the first author was with National
University of Singapore (NUS), supported under the Research
Grant RP3989903 provided by the National Science and
Technology Board and the Ministry of Education of Singapore.
The authors would also like to thank Dr. Hwee-Tou Ng and Dr.
Xiao-Li Li of NUS for providing invaluable suggestions.

9. REFERENCE
[1] Bellegarda, J. R., Exploiting latent semantic information in

statistical language modeling, In Proceedings of the IEEE,
Vol.88, No.8, pp.1279-1296, August, 2000.

180

[2] Berry, M. et al., SVDPACKC (Version 1.0) User's Guide,
University of Tennessee Technical Report CS-93-194, April
1993.

[3] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.J.,
Classification and Regression Trees, Wadsworth Int. 1984.

[4] Brodley, C. E. and Utgoff, P. E., Multivariate decision trees,
In Machine Learning, Vol.19, No.1, pp.45-77, 1995.

[5] Buckley, C., Salton, G. and Allan, J., The effect of adding
relevance information in a relevance feedback environment,
In ACM SIGIR’94, pp.292-300, 1994.

[6] Cortes, C. and Vapnik, V., Support vector networks, In
Machine Learning, Vol.20, pp.273-297, 1995.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.
and Harshman, R., Indexing by latent semantic analysis, In
Journal of the American Society for Information Science,
Vol.41, No. 6, pp.391-407, 1990.

[8] Denoyer, L., Zaragoza, H. and Gallinari, P., HMM-based
passage models for document classification and ranking, In
ECIR’01, 2001.

[9] Duda, R. O., Hart, P. E. and Stork, D. G., Pattern
classification, Second Edition, A Wiley-Interscience
Publication, 2001.

[10] Guo, H. and Gelfand S. B., Classification trees with neural
network feature extraction, In IEEE Trans. on Neural
Networks, Vol. 3, No. 6, pp.923-933, Nov., 1992.

[11] Hofmann, T., Probabilistic latent semantic indexing, In ACM
SIGIR’99, pp.50-57, 1999.

[12] Joachims, T., A probabilistic analysis of the rocchio
algorithm with TFIDF for text categorization, In ICML’97,
pp.143-151, 1997.

[13] Joachims, T., Learning to classify text using Support Vector
Machines, Kluwer Academic Publishers, 2002.

[14] Joachims, T., Text categorization with Support Vector
Machines: learning with many relevant features, In
ECML’98, pp.137-142, 1998.

[15] Juang, B.-H., Chou, W. and Lee, C.-H., Minimum
classification error rate methods for speech recognition, In
IEEE Trans. on Speech and Audio Processing, Vol.5, No. 2,
pp.257-265, March, 1997.

[16] Katagiri, S., Juang, B.-H. and Lee, C.-H., Pattern recognition
using a family of design algorithm based upon the
generalized probabilistic descent method, In Proceedings of
the IEEE, Vol.86, No.11, pp.2345-2373, 1998.

[17] Kuo, H. K. J. and Lee, C.-H., Discriminative training of
natural language call routers, In IEEE Trans. on Speech and
Audio Processing, Vol.11, No.1, pp.24-35, 2003.

[18] Lee, C.-H. and Huo, Q., On adaptive decision rules and
decision parameter adaptation for automatic speech
recognition, In Proceedings of the IEEE, Vol.88, No.8,
pp.1241-1269, August, 2000.

[19] Lee, C.-H., Soong, F. K. and Paliwal, K. K., Automatic
Speech and Speaker Recognition: Advanced Topics, Kluwer
Academic Publishers, Boston, 1996.

[20] Lewis, D. and Ringuette, M., A comparison of two learning
algorithms for text categorization. In The Third Annual
Symposium on Document Analysis and Information
Retrieval, pp.81-93, 1994.

[21] Li, Y. H. and Jain, A. K., Classification of text documents, In
The Computer Journal, Vol.41, No.8, pp.537-546, 1998.

[22] Liu, J. M. and Chua, T. S., Building semantic perceptron net
for topic spotting, In ACL’01, pp.370-377, 2001.

[23] Makoto, I. and Takenobu, T., Cluster-based text
categorization: a comparison of category search strategies, In
ACM SIGIR'95, pp.273-280, 1995.

[24] Masand, B., Lino, G. and Waltz, D., Classifying news stories
using memory based reasoning, In ACM SIGIR'92, pp.59-65,
1992.

[25] McCallum, A. and Nigam, K., A comparison of event models
for naïve Bayes text classification, In AAAI-98 Workshop on
Learning for Text Categorization, pp.41-48, 1998.

[26] Miller, D. R. H., Leek, T. and Schwartz, R. M., A Hidden
Markov model information retrieval system, In ACM
SIGIR’99, pp.214-221, 1999.

[27] Ng, H. T., Goh, W. B. and Low, K. L., Feature selection,
perceptron learning, and a usability case study for text
categorization, In ACM SIGIR’97, pp.67-73, 1997.

[28] Quinlan, J., C4.5: Programming for machine learning,
Morgan Kaumann, 1993.

[29] Ruiz, M. E. and Srinivasan, P., Hierarchical neural networks
for text categorization, In ACM SIGIR’99, pp.81-82, 1999.

[30] Schapire, R. and Singer, Y., BoosTexter: A boosting-based
system for text categorization, In Machine Learning, Vol.39,
No.2-3, pp.135-168, 2000.

[31] Schutze, H., Hull, D. A. and Pedersen, J. O., A comparison
of classifier and document representations for the routing
problem, In ACM SIGIR’95, pp.229-237, 1995.

[32] Sebastiani, F., Machine learning in automated text
categorization, In ACM Computing Surveys, Vol.34, No.1,
pp.1-47, March 2002.

[33] Utgoff, P. E. and Brodley, C. E, Linear machine decision
trees, In COINS Technical Report 91-10, Dept. of Computer
Science, University of Massachusetts, 1991.

[34] Vapnik, V., The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

[35] Wu, H. R., Phang, T. H., Liu, B., and Li, X. L., A refinement
approach to handling model misfit in text categorization, In
KDD’02, July 2002.

[36] Yang, Y. and Liu, X., A re-examination of text
categorization methods, In ACM SIGIR’99, pp.42-49, 1999.

[37] Yang, Y., Expert network: Effective and efficient learning
from human decisions in text categorization and retrieval, In
ACM SIGIR'94, pp.13-22, 1994.

181

