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Abstract

In this paper we discuss the architecture of an
object-oriented application framework (OOAF) for
text categorization. We describe the system
requirements and the software engineering
strategies that form the basis of the design
and implementation of the framework. We show
how designing a highly reusable OOAF architecture
facilitates the development of new applications.
We also highlight the key text categorization
features of the framework, as well as practical
considerations for application developers.
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1 Introduction

Automatic Text Categorization (TC) has been an
active research area for over a decade and is in-
creasingly being used in the development of com-
mercial applications. These commercial applica-
tions usually belong to one of two system types:
in-house systems implemented in order to solve a
particular company’s specific problems, and generic
systems marketed to corporations as ready-made
categorization solutions. The former tend to be
ad-hoc solutions not suitable for use by others, and
not made publicly available. The latter tend to
be proprietary, closed-source, expensive solutions
inaccessible to individuals, small companies, and
researchers.

One result of this situation is that many tech-
niques and design strategies are underdeveloped as
they are not well-known to research or application
communities. Systems such as Weka [14] or Lib-
bow [7] are widely used by the research commu-
nity, but tend not to focus on integration into real-
world applications. By contrast, the commercial
systems are often useless for research because they
are closed-source, generalize poorly to new prob-
lems, or cost more than most researchers can afford.
Therefore, researchers do not get the benefit of
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leveraging industry’s TC applications, and indus-
try doesn’t get the benefit of the latest develop-
ments and knowledge from the research community.

It is our aim to create first-rate customizable
tools for Text Categorization that apply equally
well to the problems of industry and research.
Our tools should also be accessible to the
casual or small-time developer interested in TC.
To accomplish this, we have implemented a
framework for Text Categorization.

Before discussing the details of the framework,
we will briefly look at some general background on
frameworks. Different software engineering archi-
tectures are used for different sets of requirements.
The most common kinds of software architectures
include:

Applications Application developers focus on
improving internal reusability and interfacing
with users. Developer or user extensibility
need not be considered–the application is
considered complete as delivered. A popular
example of a classification application is the
Weka Machine Learning system [14].

Toolkits and libraries Library developers
focus on generic reusability for multiple
applications. Examples include the
mathematical or networking libraries that
exist for most programming languages. The
“bow” library [7] is an example from TC.
Developers who use a library do not have
to learn its internal architecture, and the
library does not dictate the structure of
the application under development.[4] The
internal implementation of the library is
considered to be hidden from its users.

Frameworks A framework is a set of classes that
embodies an abstract design for solutions
to a family of related problems [4, Ch. 2].
Framework designers focus on applicability
to a certain set of problems, and on flexible
best-practices embodied in software. An
“inversion of control” puts the framework in
charge at a high level inside the application,
with custom application code playing a



subordinate role–therefore, interfaces between
framework classes must be documented and
stable. Common examples of frameworks
include generic application frameworks
like Apple’s “Cocoa.” Weka may also be
considered a framework when it is used to
implement new categorization algorithms
through subclassing.

Before deciding on one of these approaches it
is important to define the main user audience for
text categorization systems in order to determine
requirements for a useful TC system. We see typi-
cal TC users in terms of the following roles:

Application Developer A professional such as a
web developer or engineer that needs to add
automatic categorization features to a software
application. The application developer may
have no prior experience with Text Categoriza-
tion. The end user may have varying degrees
of control over the categorization process.

Researcher A TC researcher interested in novel
approaches to machine learning or document
processing. This professional is often not inter-
ested in implementing a real world application,
but wishes to improve existing TC algorithms
and methodologies.

Domain Expert Complex applications often re-
quire a domain expert who dictates project
requirements and has expertise in the applica-
tion domain (e.g. financial documents, knowl-
edge management). The domain expert of-
ten makes high-level decisions about when TC
could be effective in the given domain, and
needs to exert fine control over the TC process.

Of course, one person may play several of these
roles simultaneously.

A researcher will most often want to use a TC
system as a framework, because they need to inte-
grate custom code into the system at a low level.
A researcher may also find it convenient to use a
TC system as an application which provides a con-
venient user interface for running common kinds of
experiments. By contrast, an application developer
may want to use a TC system as a library or set
of libraries, providing no custom code of his or her
own.

Given these requirements, we decided to imple-
ment our software as a framework rather than as an
application or set of libraries. One reason for this
is that a framework can easily be turned into an
application by providing simple wrapper code, and
it can be turned into a library by providing con-
crete implementation classes. However, libraries
and applications can not typically be turned into
frameworks very easily. Therefore, a framework

provides the best coverage for the perceived needs
of the TC community.

The framework described in this paper includes
classes for managing documents, collections of doc-
uments, categorization algorithms, and so on. The
core framework includes both concrete classes like
“Näıve Bayes Learner” which may be used without
custom development, as well as abstract classes
like “Boolean Learner” which require the user to
implement certain behaviours before using them.
Abstract classes provide a starting point and an
interface for new development and reduce repeated
work.

2 Design Requirements

A framework must be able to accommodate func-
tionality in a number of essential areas, providing
common behaviour while allowing users and de-
velopers to customize behaviour through configu-
ration parameters and/or framework subclassing.
We summarize the design issues in this framework
as follows. Note that some of these issues are gen-
eral framework design issues, while others are more
specific to this particular domain.

Framework reusability The main reason
for building a framework rather than
a single text categorization application
is to increase reusability of design and
implementation. Framework research
literature provides guidelines on building
application frameworks.[4]

Modularity The components’ internal implemen-
tations should be able to change without af-
fecting the other components.

Integration The framework should be able to in-
terface easily with existing categorization so-
lutions (e.g. Weka, libbow, various Neural Net
libraries, and feature selection packages), unit-
ing many solutions under a common interface.

Rapid Application Development Prototyping
new applications should be very quick, with
a minimum of custom code in each case.
Custom code should generally implement new
behaviors rather than new structures within
the framework.

Rapid Research Cycle Researchers should be
able to quickly investigate new questions,
using the framework as a starting point.

Model Flexibility The framework structure
should be flexible enough to accommodate
the needs of many different categorization
algorithms that may operate on different
representations of the underlying data.



Computational Efficiency The data sets
involved can be quite large, so it is important
to have a design and implementation that
is efficient in memory, CPU time, and other
practical measures such as the time it takes
to load a categorizer from disk and generate a
hypothesis.

Separability Pieces of the framework should be
usable in isolation for users that only need
a feature selection package, a vector catego-
rizer, etc. The most separable pieces of the
framework should in many cases be completely
separated and available under separate distri-
bution, and used as a software dependency in
our framework.

With the above issues in mind, we have
chosen to implement the framework using the
Perl programming language. [13] A vast number
of Perl modules are freely available for many
different tasks, which extends the domain of
applicability for the framework. Many of these
modules are tools for processing text, and can
be used by the framework. Perl is widely used,
multi-platform and integrates well with other
languages, so it enables fast prototyping. Perl is
also natively object-oriented, with a very flexible
object model.[2]

In Perl, the basic unit of reusable code is called
a module; our framework is implemented as the
AI::Categorizer module.

3 Functional Areas

The framework supports several functional areas
of Text Categorization. We describe them here
together with the tradeoffs and design decisions
that may be useful to other researchers developing
TC systems.

Figure 1 shows the architecture of the frame-
work. Attributes and methods of each class have
been removed for the sake of brevity. Each of the
classes will be discussed in the context of their Text
Categorization function. Categorizer is the top
level class, which manages the data-related classes
(KnowledgeSet, Collection, Document and Cat-
egory), as well as the machine learning Learner
classes and Hypothesis, and a class for reporting
the results.

Data format

Since documents come in a wide variety of formats
such as XML, plain text, or PDF, the framework
should support the importing of knowledge in sev-
eral formats and have a mechanism by which the
user may extend these capabilities for a particular
environment. The base class Document allows the
user to specify the content as a string. The user
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Figure 1: Simplified UML class diagram for the
framework

may also subclass the Document class, overriding
the parse() method for direct importing of data
in its natively stored format.

In the Collection class and its subclasses, the
framework also supports the notion of a collection
of stored documents, such as a directory of text
files, a database of stored documents, or an XML
file containing multiple documents. The most
common storage formats can be a part of the core
framework, while proprietary or unusual formats
can be implemented through subclassing. Note
that the document format and collection format
are independent characteristics; a project may
have a directory of text files, a directory of XML
files, or a directory of PDF files, but these would
all be handled by the Collection::Files class
with the appropriate Document subclass. Likewise,
a project may have a collection of XML documents
stored in a single file, as a directory of files, or
in a database, but these would all be parsed by
the Document::XML class with the appropriate
Collection subclass. Note that Document and
its subclasses exist mainly for the purpose of
importing data; after the data is read and parsed,
the rest of the system will throw away most of
the information in the Document object, keeping
only its FeatureVector object and the list of
Categories associated with the Document.

Structured documents

Each document may have several sections of
content, such as “body”, “subject”, “signature”,
and so on. In AI::Categorizer, the user specifies
the content by providing a hash of key-value pairs,
where the key indicates the name of the section,
and the value is a string containing the content
data. The user may also specify “weights” to
assign to the features found in each section. In the
future, other treatments for the different sections
of a document may be supported as we develop
effective ways to use this structure.



Tokenizing of data

The default implementation tokenizes document
data by extracting all non-whitespace byte
sequences between word-character boundaries.
This is usually sufficient in English, but non-
English language documents or documents with
unusual content will certainly necessitate custom
tokenization. To achieve this, the user may
subclass the Document class and override its
tokenize() method if a different algorithm is
required. We may also add other tokenizing
options to the default implementation, controlled
by parameters, if other common tokenizing needs
are found.

Linguistic stemming

The default implementation provides support for
the Porter stemming algorithm, a standard algo-
rithm for removing morphemes from English words
to obtain their “stems,” or root forms. By default
no stemming is performed, but a stemming param-
eter can be set to porter to activate stemming.
Alternatively, the user may override the stem -
words() method of the Document class for custom
stemming. This may be extremely important in
highly morphological languages or in certain appli-
cation domains.

Feature selection

Feature selection is handled by the abstract
FeatureSelector class and its concrete subclasses.
These classes implement scan features() and
select features() methods. The select fea-
tures() method works on an entire KnowledgeSet
in-memory at once. The scan features() method
can scan a collection of documents for the best
features without necessarily loading the entire
collection into memory. Both methods return a
FeatureVector object to the client (typically a
KnowledgeSet), which saves the list of highest-
ranking features to use when parsing future
documents.

The default implementation uses a simple
Document-Frequency criterion for selecting fea-
tures to use in model-building and categorization.
This is very efficient, and has been shown in [16]
to be competitive with more elaborate criteria
in many common situations. We will add more
criteria as the project develops.

Vector space modeling

The full range of TF/IDF weighting from [11] are
supported, controlled by a tfidf weighting pa-
rameter. If the user wants to employ a different
weighting scheme, the weigh features() method
in the KnowledgeSet class may be overridden.

Machine Learning algorithm

Choosing a machine learning algorithm is done by
choosing a subclass of the Learner class. Sev-
eral algorithms have already been implemented in-
cluding Näıve Bayes [6], Support Vector Machines
[12] [3], Neural Networks [1] [15], k-Nearest Neigh-
bors [15], and Decision Trees [9]. Any Learner
class needs to implement the virtual methods cre-
ate model() and get scores(), which supply the
semantics behind the train() and categorize()
methods, respectively. Since many Machine Learn-
ing algorithms are implemented as a series of binary
decisions concerning individual category member-
ships, an abstract Learner::Boolean class is pro-
vided to help developers of new categorizers–in this
case, one need only implement the smaller cre-
ate boolean model() and get boolean score()
methods.

Note that the Learner class does dual duty as
a learner and a categorizer. No class distinction is
made in the framework between a Learner before
and after it has been trained–they are objects of the
same class. This allows for the possibility of on-line
learning, in which a trained learner incrementally
uses additional training examples to improve its
current model.

Machine Learning parameters

Because each ML algorithm may have several
implementation parameters to control behavior,
each Learner subclass accepts different parame-
ters. To facilitate the wide variety of parameters
that different classes may require, we use the
Class::Container module1. This module allows
each Learner subclass to declare the parameters
it accepts, so that a Neural Network class can
declare arguments for number of input, hidden,
and output nodes, a k-Nearest Neighbor class
can declare arguments for k and for thresholding
strategies, and so on. These parameters are passed
through the framework transparently using a
variation on the “Factory Method” pattern. [5]

In fact, the Learner and its subclasses are not
the only pieces of the framework in which varying
parameters control operations. Because this
situation is common throughout the framework,
Class::Container is employed consistently for
all structural classes in the framework. This goes
a long way toward reducing the number of classes
necessary to implement varying behavior.

Hypothesis behavior

Certain applications (e.g. newswire categorizers)
may need to find “all categories that apply” for
each document, whereas other applications (e.g.

1available at http://search.cpan.org/author/
KWILLIAMS/Class-Container-0.08/



automatic email routers) may only be interested
in the “best N categories,” where N is often 1.
These scenarios are supported by the Hypothesis
class, which provides a generic interface to the
scoring decisions of the categorizers. Methods
like categories(), best category(), and
in category() provide application-level access
to categorization decisions based on the scores
assigned by the Learner class.

On-line training

Some machine learning algorithms can easily
integrate new knowledge into the knowledge base
without going through the potentially expensive
process of re-training the categorizer from
scratch. For instance, most kNN implementations
can do this, whereas most Neural Network
implementations cannot. For categorizers that
support this, a virtual add knowledge() method
in the Learner class is supplied. Currently no
Learner subclasses in AI::Categorizer support
on-line learning, but the architecture supports it
when an implementation is needed.

4 Framework Customization

Like C++ and Java, Perl is natively object-
oriented, but unlike them it does not have strict
separation of compilation and execution stages.
Rather, the compiler and interpreter work in
tandem, trading back and forth to execute a Perl
application, allowing runtime compilation of code.
In addition, Perl’s object model is fairly loosely
bound (similar in this respect to Objective-C’s
model), permitting class names to be stored in
variables and/or specified at runtime. Because
of these properties, the choice of specific classes
to be used in the framework can be made at
runtime, controlled by parameters, facilitated by
the Class::Container module. It allows several
classes to cooperate as a framework without
having to know about each others’ class names,
constructor parameters, and so on, and provides
the glue to do strict early checking of parameter
names and types, facilitating transparent factory
patterns within the framework.

For instance, to use the built-in SVM learner,
one could either create an AI::Categorizer::SVM
object directly, or one could specify the class name
by providing it as a value for the learner class
parameter. This behavior is implemented at
the framework level, so different Document,
Collection, FeatureVector, etc. classes can
be pressed into service by the document class,
collection class, and feature vector class
parameters, respectively. This helps facilitate
quick architectural changes, letting developers
drop their own subclasses into the framework with
relative ease.

5 Evaluation

Although the focus of this paper is the framework
discussion and design, we present here some basic
evaluation of its performance. We have evaluated
our framework by building classifiers in several
applications. We have implemented Näıve Bayes,
Support Vector Machine, k-Nearest-Neighbor, and
Decision Tree classifiers in the framework. We
have trained classifiers using the standard Reuters
ApteMod corpus and obtained similar results to
the ones described in [15]. We have also trained
and tested classifiers on other corpora in financial,
educational, and discussion group domains. Due
to space constraints and the proprietary nature of
some of our other corpora, we will only describe
results on the Reuters ApteMod corpus here, using
the Näıve Bayes algorithm.

In training categorizers, we typically use two
passes through the corpus when loading the data.
The first pass scans the documents in order to per-
form feature selection, while the second pass actu-
ally loads the data into memory. This allows mem-
ory to be used more effectively than if we only made
one pass over the data, because we avoid loading
extraneous features. On the Reuters corpus, using
Porter stemming [8] and a standard list of stop-
words [10], the first pass over the 7769 training files
may take roughly 59 CPU seconds and consume
11 MB of memory, while the second pass takes
about 57 CPU seconds and consumes 32 MB. The
memory figures reflect the total size of a running
program, not just the size of the document data in
memory.2

After the data is loaded, we pass it to a Learner
object for training. Our Näıve Bayes training pro-
cess takes 8.1 CPU seconds and consumes 40 MB
of memory. Categorizing the 3019 test documents
takes about 95 CPU seconds and consumes 14 MB.

With experimental settings similar to the ones
described in [15] (we used Document Frequency fea-
ture selection, since we have not yet implemented
χ2 or Information Gain selection algorithms), we
achieve recall, precision, and F1 scores of 0.724,
0.851, and 0.782 when micro-averaged, and 0.366,
0.497, and 0.396 when macro-averaged. We believe
any discrepancies with [15] are due to differences in
feature selection and/or document tokenizing, but
we have not tested this belief thoroughly.

6 Integration and Further Work

The framework has been used in a number of appli-
cations including an extension to the SQL language
of the PostgreSQL relational database. It has also

2Tests were performed on a machine with a Pentium
III 800Mhz chip, running Red Hat Linux release 7.0 and
Perl 5.6.1. Results are not comparable across different
architectures, but may be useful as a rough guide.



been used as distributed service for classification
using an XML/RPC architecture, and integrated
into multi-tier web applications and desktop appli-
cations.

We know that much work has been done by
previous developers and researchers in the area of
Text Categorization. While we are in one sense re-
treading ground by implementing generic TC soft-
ware, we see our work as a way to extend the reach
of others’ work, rather than as a replacement for
it.

To this end, we have tried to make the frame-
work very inter-operable and provide interfaces to
existing TC products. For instance, we have imple-
mented a Learner subclass called Learner::Weka
to provide an interface to any Weka classifier the
user would like to use. In this way, AI::Categor-
izer benefits when progress is made in Weka, as
well as the other way around.

We hope to create interfaces to other existing
products as well. If the AI::Categorizer project
gains enough momentum that other people wish
to contribute code to it, we will encourage this
code to be as independent and generic as possible
so that we may simply create an interface to it in
our framework. For instance, this is how the SVM
learner in our framework was created recently–our
AI::Categorizer::SVM class is just a thin wrap-
per around a generic Algorithm::SVM module by
another author we collaborated with, and this in
turn is a wrapper around the C library libsvm.

It is our hope that this strategy will extend the
reach of both our framework and related existing
and new TC software.

In designing the AI::Categorizer framework
architecture, we have focused on aspects of Text
Categorization that tend to remain common from
one task to the next, allowing for growth in aspects
that tend to change. For instance, we have speci-
fied that document features are encapsulated in a
FeatureVector object, but we have not specified
that object’s internal implementation. Likewise,
we have specified that the Machine Learning TC
algorithms are encapsulated by the Learner class,
but the specific algorithms will tend to vary from
task to task.

In the first public versions of the framework,
we have tended to implement the simplest versions
of each of these classes, with more elaborate or
optimized implementations deferred to later work.
For instance, our FeatureVector class is currently
implemented using Perl hashes, but other imple-
mentations (for instance, using C structs to imple-
ment sparse integer vectors) may be implemented
in order to improve memory usage and/or speed.
Other Learner subclasses may also be added, and
the existing subclasses may be improved to pro-
vide more feature-rich implementations or improve

efficiency. Because they are encapsulated in sub-
classes, these implementations may be traded at
will, allowing experimentation with different imple-
mentations. In particular, we expect the Learner
and FeatureSelector areas of the framework to
grow as new algorithms are added and existing
algorithms are informed by current research.

7 Conclusions

We have developed a new framework for Text Cat-
egorization which is publicly available and lever-
ages existing work as much as possible. We have
primary goals of providing usable TC software for
application developers, researchers, and domain ex-
perts, as well as providing bridges between exist-
ing and new TC software. Our framework design
endeavors to embody the key requirements which
are common to most work in TC, and thus should
improve reusability of design and implementation
in applications that use text categorization. The
analysis of its architecture may be useful to those
embarked in building their own TC systems, so we
have discussed the design decisions of the different
functionalities supported by the framework.

Periodic point-releases of AI::Categorizer are
available at http://www.cpan.org/modules/by-
authors/id/KWILLIAMS/ , and bleeding-edge
development versions are available via CVS
at http://www.sourceforge.net/projects/ai-
categorizer/ .
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